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 

Abstract 

 
Purpose - This paper presents a methodology for defining and 

modeling context-awareness and describing efficiently the 

interactions between systems, applications and their context. 

Also the relation of modern context-aware systems with 

distributed computation is investigated. 

Design/methodology/approach - On this purpose, definitions 

of context and context-awareness are developed based on the 

theory of computation and especially on a computational 

model for interactive computation which extends the classical 

Turing Machine model. The computational model proposed 
here, encloses interaction and networking capabilities for 

computational machines. 

Findings - The definition of context presented here develop a 

mathematical framework for working with context. Also the 

modeling approach of distributed computing enables us to 

build robust, scalable and detailed models for systems and 

application with context-aware capabilities. Also enables us to 

map the procedures that support context-aware operations 

providing detailed descriptions about the interactions of 

applications with their context as well as with other external 

sources. 

Practical implications - A case study of a cloud based 
context-aware application is examined using the modeling 

methodology described in the paper so as to demonstrate the 

practical usage of the theoretical framework that is presented 

Originality/value - The originality on the framework 

presented here relies on the connection of context-awareness 

with the theory of computation and distributed computing. 
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1. Introduction 
 

The modeling methodology presented in this paper aims to 

provide mathematical foundations in the discussion around 

context-awareness. In the rich literature on the subject, 

researchers usually use plain language on defining context-

awareness which sometimes leads to vague or disputed 

definitions; see the discussion about weak or inadequate 
definitions in (Abowd et al., 1999). Moreover, the connection 

of context-awareness with other fields of computer science 

like computational complexity or distributed systems is not 

clearly defined. On these matters, the contribution of this 

paper is the development of a framework for the definition of 

context-awareness based on the theory of computation which 

provides an important insight to the subject. The presented 

framework is later used for the development of a robust and 

scalable modeling methodology for context-aware and 

distributed systems based on the theory of computation. The 

modeling methodology aims to provide tools for mapping the 

structure and functionality of context-aware systems taking 
into account the support for distributed computation of 

modern computational systems. 

There are two more issues that must be investigated before 

presenting our framework.  

The first is the user-centric perception about context-

awareness that is widely spread in the literature. Adopting a 

user-centric, a data-driven or a system-centric approach in 

defining context and developing a modeling methodology 

determines the degree of generality that the produced models 

will have and how restrictive the designing assumptions will 

be. 
The second issue under investigation is the relation between 

modern implementations of context-awareness and distributed 

computation. The increased use of cloud services and 

networked software components in the development of 

systems and applications gradually moves research about 

software design from stand alone systems and applications to 

distributed computational systems. This tension affects the 

technology concerning context-aware systems and as a result a 

modeling framework must consider distributed computation. 

In the next section let us discuss in details the issues that the 

methodology on this paper addresses to. In section 3 a 

computational model appropriate for modeling interacting 
software systems is defined. In section 4 the computational 

model is used as a basis for providing a concrete definition of 

context-aware systems. In section 5 we develop a modeling 
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methodology for systems of distributed computing with 

context-aware capabilities. A case study of a context-aware 

application is presented in section 6 demonstrating the 

modeling capabilities of the definition proposed followed by 

some discussion on section 7. 

 

2. Issues on defining and modeling context 
 
2.1 Context definitions 

 
The research concerning context-awareness usually focuses on 

computational systems that detect the environment they 
operate in, which constitutes their context of operation, and 

use this information to provide services to their users. 

A comprehensive definition of a widely accepted perception 

of context-awareness that summarizes a big part of the rich 

literature on the subject is proposed in (Abowd et al., 1999). 

 

“A system is context-aware if it uses context to provide 

relevant information and/or services to the user, where 

relevancy depends on the user’s task.” 

 

This definition although comprehensive and sufficient restricts 

context-awareness in systems that interact with users and have 
a user-centric operation. It does not take into account software 

components that use context-awareness in order to produce 

information for other systems or other software components 

besides users. Context under this consideration is restricted to 

be a part of the user’s environment ignoring the cases where a 

system is a part of a network or it supports distributed 

computing operations and the context of the system is 

extended beyond the user’s environment. 

An interesting perception of context is presented in (Coulouris 

et al., 2012). The authors identify that the physical 

circumstance of a user or device may be relevant to the 
behavior of a system that may be mobile or even distributed. 

Context of an entity is then an aspect of its physical 

circumstances of relevance to system behavior. In this 

statement an entity may be a human, a place or a device and 

its contextual information includes relatively simple values 

that describe the environment of the entity as well as the state 

of other associated entities. Contextual information is 

perceived by sensors that detect the environment and other 

entities. 

This perception of context is closer to modern computational 

systems. However, it does not determine the context of 

autonomous software applications that interact with other 
software components. A software application may be installed 

in some cloud infrastructure, operate autonomously and 

interact with other systems outside the cloud; for a survey 

covering this kind of awareness see (Truong, 2009). The 

context for this application is consisted of the systems that it 

interacts. Interactions of this kind are achieved by exchanging 

messages among the interacting systems, not by sensors, and 

one system is not necessarily aware of the state of the other 

systems that it interacts with.  

Other works regard operational (Zimmermann, 2007) or 

conceptual (Dourishl, 2004) definitions of context. In each of 
them the authors define the use and perception of context by 

the properties or the operation of the entities that constitute an 

application and its context. These approaches suppress 

generality and restrict the discussion by focusing on special 

characteristics of the entities under investigation. 

The above mentioned works reflect a wider approach of the 

literature on the subject which avoids the use of mathematical 
foundations in the discussion around the definition and the 

essence of context-awareness. Since its early days, computer 

science is based on mathematical foundations that provide a 

solid basis for developing theory and practice. It would be 

fruitful to follow this approach for the research around 

context-awareness as well; this is a goal of this paper. 

 

2.2 On the user-centric approach 
 
Influenced by the vision of pervasive computing the 

discussion around context and context awareness usually 

adopts a user-centric orientation. Context-awareness in this 

case is considered as a set of procedures oriented on detecting 

the users environment, so as to collect the necessary 

information which will then be used as input for operations 

that provide services to the users. 

The issue that is ignored in this perception is that there are 

systems equipped with context-aware operations that operate 

without users; or at least the users do not play a central role in 

their operation. We may refer to autonomous systems and to 

artificial intelligence (AI). Let us argue on this perception by 
providing some examples. 

If not already implemented, it is feasible to consider an AI 

system that controls the floodgates of a dam equipped with a 

hydroelectric power station. Such a system may take into 

account the weather conditions, the volume of water on the 

dam and the need for production of electric power in order to 

adjust the floodgates so as to avoid flooding and achieve an 

optimum performance for the station. This system is context-

aware and the users are really absent. 

A simple example is also the goal for autonomous self-driving 

cars. The goal is to produce cars that will serve the users 
automatically. Autonomous cars need to detect their 

environment, traffic, road and weather conditions in order to 

achieve the goal of efficiently transporting passengers to a 

predefined destination. In this example, if we replace 

passengers with luggage it becomes clear that the existence of 

users is not necessary. 

Another common example includes software entities that 

operate in a computer network, where their environment and 

context is considered to be the network devices and the other 

software components like network services. In this case the 

software entities need to identify and monitor their artificial 

environment and then interact with it in order to operate, 
regardless if they eventually reach any users or not. 

It is more useful to adopt a system-centric perception when 

discussing context-awareness. On these examples, it becomes 

clear that in many cases the users if not absent at least they do 

not play a critical role in the operation of context-aware 

systems. 
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2.3 Distributed systems instead of standalone 

applications 

 
The discussion around modern system engineering should 

move beyond stand alone systems and applications and 

consider systems that support distributed computing. The 

extensive use of networks and cloud infrastructures in modern 

systems and the development of architectures like Platform as 

a Service (P.a.a.S) and Software as a Service (S.a.a.S), see 

(Dinh et al., 2013), leads to the development of distributed 
systems rather than stand alone applications. In the work of 

(Truong, 2009) the support of distributed computing is a 

demanding need for every context modeling approach. In a 

distributed system its components are hosted in different 

locations interacting with each other, with other systems and 

with context. On this basis, the framework presented in this 

paper regards systems that support distributed computing. 

 

3. A model of interactive computation 
 
In this section let us describe computational systems using a 
computational model, the model is valid for distributed and 

stand alone systems. The advantage in this approach is a solid 

definition for the system and its interaction with its context 

which then may be used in the analysis of system structure and 

operation. It is necessary to use computational models that 

support interactive computation; this choice is enforced by the 

interactive nature of the systems studied in this paper. Let us 

then build a computational model on Turing Machines 

enhanced with interactive and networking capabilities, called 

Networked Turing Machine. The ideas that structure this 

model derive from the choice machines of Alan Turing 

(Turing, 1936) and from the interactive computation models of 
Peter Wegner (Wegner, 1998) and Persistent Turing Machines 

(Goldin, 2000). 

A Networked Turing Machine m is a multi-tape Turing 

Machine consisting of a working tape and a number of input 

tapes. On the input tapes, m reads symbols printed from other 

machines or other entities. The symbols on the input tapes 

may be printed before or during the operation of m. Reading 

and writing on an input tape f is performed by different 

entities, two or more machines or other sources, so we have to 

develop a mechanism that will handle the operation of the tape 

properly.  
Tape f is equipped with two heads; head-1 prints symbols on 

the tape and it is control by the machines interacting with m; 

head-2 reads the symbols and it functions in compliance with 

the transition function of m. Both heads may scan the same 

cell without conflicting but they may not operate at the same 

time. Then f operates under the following rules 

 

1. Initially all the cells in f have the blank symbol 

printed on them. 

2. Both heads initially move to the first cell. 

3. On input of symbol s from machine n. Head-1 prints 

s and moves to the right. 

4. On request to read. If head-2 reads the blank symbol 

stands still, otherwise reads the symbol and moves to 

the right. 

 

The working tape is used for performing computations as 

specified on its transition function considering the symbols 

read from the input tapes and the symbols on the working 

tape. Machine m prints symbols on the input tapes of other 

Machines; this is the useful output of the computations 

performed on the working tape of m. 

Definition. Networked Turing Machine m that consists of i 

input tapes, one working tape and prints output on  o input 

tapes of other machines is an 6-tuple (Q, , , , q0, qf), where 
1. Q is a finite set of states 

2.  is a finite input alphabet, which includes the blank 

symbol 

3.  is the tape and output finite alphabet    

4.  : Q   → Q   (  {L, R, S})   (i  {R, S}i)  

(
o
  {R, S}

o
) the transition function 

5. q0 is the start state 
6. qf is the halting state 

 

In the transition function, R indicates that the head of a tape 

moves to the right, L to the left and S that the head stands still. 

For the working tape all choices are valid. The heads in the 

input tapes if not still move only to the right reading the 

symbols already printed. The heads printing output symbols 

also moves only to the right if not still. 

 

As a computational model a Networked Turing Machine is as 

powerful as a Turing Machine. 

Equivalence theorem. Let m be a Networked Turing Machine 
and r a one-tape Turing machine. Machine r may simulate the 

operation of m and m may simulate the operation of r.  

 

Proof. Machine m runs the transition function of r in its 

working tape and thus simulates the operation of r the heads in 

its input tapes stand still and there is no output produced.  

Let h be a Turing machine that prints symbols on the input 

tapes of m. We build l-tape Turing machine q that simulates 

the operations of both m and h. In the first i tapes of q the 

transition function prints symbols according to the transition 

function of h. Tape i+1 is the working tape as in m. In the rest 
tapes the output of m is printed. On this way q simulates the 

operation of m and its interaction with given machine h. 

The operation of every multi-tape machine may be simulated 

by a one-tape machine and this stands for q and r as the 

transition function of the tapes of m is clearly Turing 

computable. 

 

The advantage in using Networked Turing Machines to model 

computational systems lays on the interaction capabilities that 

they enclose. Let us next define interaction and networking 

among Networked Turing Machines. 

 
Connectivity. Machines m, n are considered connected iff m 

may print symbols on the input tapes of n, then predicate 

con(m,n) is true. 
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Networking. Set N forms a network iff 

( ) ( , ) ( , )m n m N n N con m n con n m       . 

Network N interacts with external source q when 

( ) ( , ) ( , )m q m N q N con m q con q m       . 

 

Interaction among machines and the computations performed 

in a network need to have some rhythm. The machines that 
constitute a network simulate real world operations and real 

world operations require some time to get executed. Real 

world operations may run on hardware of different speeds. 

Some operations will run on faster hardware than others and 

this must be modeled in our network of Turing machines. So, 

the times tb, tc that are required by machines b and c 

respectively in order to transit between two consecutive states 

in given moment d must form ratio d = tb / tc. 
For this, on network N let us define fixed time step t and for 

each machine m let us define number σm, so that each 

transition between states as defined in the transition function 

of m is executed in time tm = t / σm. As a result for b and c in d 

stands that d = σc / σb. On this way each machine has its own 
speed of operation and interaction with other machines. For 
the case study in section V we consider all machines working 

on the same speed. 

The computational model presented so far may be used in 

modeling computational systems. Let A be a computational 

system and T a network of Networked Turing machines so that 

each computational operation ai of A is simulated by a 

Networked Turing machine i  T and every machine in T 
corresponds to an operation of A. Interaction between the 

distinct operations of A is modeled as interaction between 

machines in T. The functionality of A may then be modeled as 

a directed graph G = (T, I) where the elements of T are 

denoted by the set of nodes of G and I is the set of directed 

edges of the graph that denote the possible connections among 
the elements of T; for con(i, j) there is directed edge in G from 

node i to j. 

The networked machines that we used, model the 

computational operations of A and not the physical devices in 

which they are carried. So, machine Ai may model an 

operation carried in more than one computational devices of A 

and any subsystem of A may execute more than one operations 

modeled by more than one machine. 

There is no real restriction on the level of detail that a system 

may be modeled using Networked Turing machines. Each 

procedure ai of A may be analyzed in a number of sub-

procedures {ai,1, ai,2, ...} that their operations constitute ai. 
Whether a single machine m will be defined on T so as to 

represent ai or a sub-network Ti will be developed on T so as to 

represent the sub-procedures {ai,1, ai,2, ...} in details it is a 

matter of choice for the system designer. Describing software 

systems using networks of Turing machines provides the 

system designers with the flexibility of actually presenting on 

a model the level of details that they care to demonstrate about 

their system. For system A we may build many networks 

where each network models A in deferent level of details 

addressing different recipients. This feature enables a scalable 

approach in every system that is modeled. 
Next, we define a framework for modeling the interaction 

between A and its context. 

 

4. Definition of context-awareness 
 
Let e be the environment in which computational system A 

operates. On the term “environment” we consider the physical 

and artificial surroundings of A; the real, man-made or virtual 
content of the space in which A is embodied. 

We define set E as the set of variables that describe the 

properties of e in any given moment. For any variable vi  E 
we consider vector Vi = {vt, vt+1, vt+2….} which stores the 

evaluations of vi in moments t, t+1, t+2 etc; where t is a fixed 

time step. We then denote as vi,t the evaluation of variable vi in 

moment t. It is reasonable to restrict the variables in E and the 

evaluations stored in each Vi only to those that were valid 

during the period of the operation of A. As a consequence, in a 

changing environment e the elements of E change according to 

the changes in e for any given moment. Set E then should not 

be considered as a static factor in all systems but rather as a 

dynamic set that may be subject to changes over time. 
The type of the variables in E is not limited to numerical 

variables but it has a more general sense. Any variable vi may 

have any programmable accepted evaluation; any evaluation 

that could be accepted by a Turing machine. Moreover, any 

user interaction with A is denoted by a set of vectors that store 

the parameters of the interaction in the time period of the 

interaction. Users are part of e and their actions are described 

by some variables in a subset of E. The information that users 

enter in A modifies the input of some m  T. 
Interaction of A with e is defined as the variation of some 

variables in E as a cause of the operation of A. In this case, 

there is operation a performed by A, simulated by Turing 

machine Aa, and there is vector Vi in E so that for fixed t 
evaluation vi,t equals the output of Aa in moment t. The 

information that A displays to its users in time t causes the 

variation of some variables of E. 

Now let C be the set of all vectors Vi for environment e. 

 

Definition of Context-Awareness. System A is Context-Aware 

iff there is CA  C so that for each evaluation vi,t of vector Vi  

CA there is Ai  T that accepts vi,t and produces an output. Set 
CA describes the context of A. 

 

As analyzed in chapter 7 of Posland’s book about Ubiquitous 

Computing (Poslad, 2011) for some systems there is the 

notion of goal. A goal for system A is to produce desired 

output o on input of context parameters that are measured 
using context-awareness. 

In many cases accessing the data that A actually needs to 

produce a goal output is difficult or even impossible for a 

variety of reasons technological, social or any other. In these 

cases we are obliged to approximate the context of A so as to 

achieve an effective approximation of our goal. On this basis 

let us next define the notion of effective Context-Awareness. 

 

Definition of effective Context-Awareness. System A is 

effectively Context-Aware when during its operation it accepts 

as input CA’  CA and produces an output relatively similar to 
the output it produces when inputted CA. 
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This definition provides a subjective criterion for effective 

Content-Awareness. It is in the judgment of the system 

designer to characterize the output of a system as “relatively 

similar” to the goal and certainly the criteria of doing so are 

case-dependent. 

 

5. Modeling context-aware distributed 

systems 
 
5.1 Modeling literature 

 
In literature, modeling context-awareness is built in more solid 

ground than its definitions. Researchers use tools from 

software engineering like UML, ontology and mathematical 

logic (Baldauf et al., 2007) in order to develop efficient 

modeling methodologies for context-aware systems.  
The use of UML and object-oriented methodologies in 

modeling context aims to provide a description of the 

information that applications derive from their environments 

and then how this information is used; see (Bardram, 2005), 

(Bettini, et al., 2010), (Bikakis et al., 2007), (Henricksen et al., 

2003, 2006), (Kapitsaki et al., 2009), (Niu and Wang, 2016), 

(Sheng and Benatallah, 2005), (Strang and Linnhoff-Popien, 

2004), (Vale, 2008), (Yu et al., 2010). These approaches target 

to building high level functional and conceptual descriptions 

of applications and the way they treat context. 

Other modeling frameworks include logic (McCarthy, 1993), 

conceptual modeling languages (Hoyos et al., 2010, 2013) and 
ontology (Baumgartner, 2005), (Korpipaa et al., 2003). These 

methodologies provide conceptual approaches to what is 

considered to be context for every application and it is useful 

in the functionality of the application. These frameworks are 

designed to model the services provided by each system and 

the reason why they are built to function as they do. 

The above frameworks, although valuable, do not relate 

context-aware operations with the actual structure of the 

system as they mostly focus on a description of the usability 

and functionality of the system and the services it provides. 

Also, most of them do not support modeling distributed 
systems. 

The methodology presented next aims to supplement the 

above mentioned modeling methods by providing a different 

perspective on describing distributed systems and their 

interaction with context. It is suitable for building models that 

emphases on system structure and the interactions among the 

distinct component that constitute each system and its context. 

This methodology maps the systems structure and describes in 

details how each software component actually functions and 

how it interacts with other components and with context.  

In other words, instead of focusing on the questions “What 

does the system do?” and “What is the reason that it operates 
on this way?” let us focus on “Where each operation is 

computed?” and “How does it work?”. This is achieved by 

modeling each system as a network of Networked Turing 

machines where each machine simulates one distinct 

procedure of the system. 

Especially on context-awareness, the benefit of using this 

approach is the development of a detailed description of the 

interaction between the system components and the context. 

As each machine simulates an algorithmic procedure built in 

the system, the produced model describes the way that 

context-awareness is achieved; not just the input and output 

entities of the procedures but also the details of how the 

application interacts with context. 
 

5.2 Model formalism 

 
The methodology produces models that follow the symbology 

and structure that is next presented. 

 

Symbology 
:  binary operator of equivalence 

// comments or short descriptions 

→, ↔, ← data flow 

 

Structure 

abstract. Text in plain language, it provides a description of 

the functionality of the system. 

 

procedures. List and descriptions of the procedures executed 

in the system. Each one carries specific tasks and is 

represented in the model by one Networked Turing machine; it 
has an alphanumeric label in square brackets. In the graphs of 

the model each procedure is denoted by one node that has a 

numeric label e.g.  

1 : [input]   // user input 

2 : [screen_display]  // screen display 

In this section designers may also include documentation 

about the algorithmic operations executed in each procedure. 

Documentation may include UML diagrams, pseudo code or 

any other document that efficiently describes the procedures. 

 

context. Context entities and external sources. Each entity and 

source may output vectors of CA in one or more procedures. 
Also it may accept the output of procedures and change some 

the valuation in some vectors of CA. Context labels are placed 

in parentheses. Their corresponding nodes in the graphs are 

labeled with letters e.g.  

a : (location) // user or device location 

 

connections. Connections among system procedures and 

between procedures and external sources. Connections in the 

model denoted like in the following examples. 

con(input, screen_display) : [input] → [screen_display]  

con(location, GPS_unit) : [GPS_unit] ← (location) 
con(server, client) ˄ con(client, server) : [server] ↔ [client]  

 

graphs. One or more graphs that represent procedures, context 

and connections. 

 

6. A case study 
 

Let us present two models for web application “WMS Map 

Viewer” (Rodis, 2017). The first model describes the 

application abstractly while the second provides a more 

refined description of the application. On this way we 

demonstrate how scalable models may be produced.  
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Model 1 

abstract. “WMS Map Viewer” is a web application served by 

a cloud infrastructure and executed in any client device 

displaying web maps to its screen. Its functionality is to 

display interactive web maps on client devices. The 

application detects user interaction, user location and screen 
parameters. Then the app downloads the web maps requested 

by the user from the web services that provide them. Upon 

download, the application adjusts the maps on client device 

screen and displays them. Also the maps may be centered on 

user’s location.  

 

procedures.  

1 : [soft_serve] // Software served by cloud infrastructure 

9 : [client_app] // The application running on client 

 

context. 

a : (user)  // user of the client device 

b : (location)  // location unit (GPS) of client device 

c : (screen)  // screen of client device 

d : (providers) // web map providers 

 

connections. 

[soft_serve] ↔ [client_app] 

[client_app] ← (user)  // detects user interaction 

[client_app] ← (location)  // retrieves location 

[client_app] ↔ (screen)   

// detects screen parameters and displays map content 

[client_app] ↔ (providers) 

// request and then downloads web maps from the providers 

 

graph. 

 
A graph for model 1 

 

Model 2 

abstract. “WMS Map Viewer” is an http / JavaScript web 
application for viewing and indexing web maps. The 

application is provided as SaaS (Software as a Service) served 

by a cloud infrastructure and it is designed so as to provide 

ubiquitous access to web maps for its users. In this case, the 

term “ubiquitous access” is used in the sense that the users of 

the application may access the content of web maps from any 

web enabled device; whether it is an old mobile phone and the 

users are on the field or a high-end system and the users are on 

their offices or labs. In all of these occasions the users will 

have the same quality of service using the application and the 

application will provide the same functionality through a User 

Interface (UI) that adapts the displayed content to the screen 

of each device.  
The cloud infrastructure serves only the appropriate software 

components depending on the client device and the user 

requested functionality. Serving more software components 

than those that are necessary would increase network traffic 

and slow down the operation of low resources devices without 

any benefit. Also, the application detects user interaction so as 

to provide the desired content to the user and also detects the 

location of the user, after acquiring permission, so as to 

display the map content of the user’s location. 

 

procedures.  

1 : [soft_serve]  

// software served by cloud infrastructure 

2 : [soft_download]  

// the application running on client downloads the necessary 

software components 

3 : [param_detection]  

// a procedure running on client detects device parameters 

asks for necessary UI 

4 : [map_display] 

// map content is adjusted and displayed on screen 

5 : [get_location] 

// location data are retrieved from device 

6 : [user_detection] 

// user interaction is detected 

7 : [map_request]  

// web maps are requested from external sources 

8 : [get_map] 

// web map content is downloaded from external sources 

 

context. 

a : (user)  // user of the client device 

b : (location)  // location unit (GPS) of the device 

c : (screen)  // screen of client device 

d : (providers) // web map providers 

 
connections. 

[soft_serve] ↔ [soft_download]  

// cloud infrastructures accepts as input the request for 

serving software components and then uploads the necessary 

software on the client. 

(screen) → [param_detection] 

// a procedure running on client device accepts as input the 

screen parameters of the client device. 

[param_detection] → [soft_download] 

// based on screen parameters the necessary software is 

downloaded from cloud 
[soft_download] → [map_display] 

// the necessary software components are downloaded on 

the device so as to properly display map content 

b 

c 

d 

a 

Network 

A 

1 9 

Context 
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[map_display] → (screen) 

// map content is adjusted and displayed on client screen 

(user) → [user_detection] 

// procedure [user_detection] accepts the variables of CA 

that describe user interaction 

(location) → [get_location] 

// the application retrieves GPS data. 

[get_location] → [map_request]  

[user_detection]→ [map_request] 

// based on user interaction and user’s location the client 

forms requests for web maps from map providers. 
[map_request] → (providers) 

// web maps are requested form map providers. 

(providers) → [get_map] 

// web maps are downloaded from external sources. 

[get_map] → [map_display] 

// downloaded web maps are inputted on map display 

procedure. 

 

graph. 

 
A graph that models the operation of WMS Map Viewer in 

details, model 2. 

 

7. Discussion 
 

The model of Networked Turing Machines extends current 

computational models by enclosing networking and 

interaction capabilities in the computational units. Using this 

model it is easy to describe distributed systems and systems of 

parallel processing as well as their interaction with external 

sources and other systems. These capabilities make this model 

ideal for describing context-aware applications and map their 

internal structure. 

Computational complexity for context-awareness may also be 

studied using the above models. For instance, if a procedure 

requires exponential time to be completed then this affects the 

performance of the whole system. In particular, if the 

procedure of detecting some parameter of context corresponds 

to solving some worst case scenario of a problem in the NP 
complexity class, then the output of the system to the users or 

to other systems may not be computed efficiently. 

The definitions of context and context-awareness presented 

in this paper are based on the theory of computation rather 

than a description of these notions in plain language as it 

usually happens on the literature of this field. On this way the 

above definitions are built on solid ground avoiding vagueness 

that may arise from unclear or disputed descriptions. The 

modeling methodology and the case study presented in the 

previous sections reveals the robustness of the models and 

definitions of this paper and provide a detailed map of the 

functionality of the system under study. 
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