
 1



Abstract

Purpose - This paper presents a methodology for defining and

modeling context-awareness and describing efficiently the

interactions between systems, applications and their context.

Also the relation of modern context-aware systems with

distributed computation is investigated.

Design/methodology/approach - On this purpose, definitions

of context and context-awareness are developed based on the

theory of computation and especially on a computational

model for interactive computation which extends the classical

Turing Machine model. The computational model proposed
here, encloses interaction and networking capabilities for

computational machines.

Findings - The definition of context presented here develop a

mathematical framework for working with context. Also the

modeling approach of distributed computing enables us to

build robust, scalable and detailed models for systems and

application with context-aware capabilities. Also enables us to

map the procedures that support context-aware operations

providing detailed descriptions about the interactions of

applications with their context as well as with other external

sources.

Practical implications - A case study of a cloud based
context-aware application is examined using the modeling

methodology described in the paper so as to demonstrate the

practical usage of the theoretical framework that is presented

Originality/value - The originality on the framework

presented here relies on the connection of context-awareness

with the theory of computation and distributed computing.

Keywords. Context, Context-Awareness, interactive

computation, distributed computation, Networked Turing

Machines

Paper type. Research paper

Author Accepted Manuscript. Cite as:

Panteleimon Rodis, (2018) "On defining and

modeling context-awareness", International Journal

of Pervasive Computing and Communications,

https://doi.org/10.1108/IJPCC-D-18-00003

1. Introduction

The modeling methodology presented in this paper aims to

provide mathematical foundations in the discussion around

context-awareness. In the rich literature on the subject,

researchers usually use plain language on defining context-

awareness which sometimes leads to vague or disputed

definitions; see the discussion about weak or inadequate
definitions in (Abowd et al., 1999). Moreover, the connection

of context-awareness with other fields of computer science

like computational complexity or distributed systems is not

clearly defined. On these matters, the contribution of this

paper is the development of a framework for the definition of

context-awareness based on the theory of computation which

provides an important insight to the subject. The presented

framework is later used for the development of a robust and

scalable modeling methodology for context-aware and

distributed systems based on the theory of computation. The

modeling methodology aims to provide tools for mapping the

structure and functionality of context-aware systems taking
into account the support for distributed computation of

modern computational systems.

There are two more issues that must be investigated before

presenting our framework.

The first is the user-centric perception about context-

awareness that is widely spread in the literature. Adopting a

user-centric, a data-driven or a system-centric approach in

defining context and developing a modeling methodology

determines the degree of generality that the produced models

will have and how restrictive the designing assumptions will

be.
The second issue under investigation is the relation between

modern implementations of context-awareness and distributed

computation. The increased use of cloud services and

networked software components in the development of

systems and applications gradually moves research about

software design from stand alone systems and applications to

distributed computational systems. This tension affects the

technology concerning context-aware systems and as a result a

modeling framework must consider distributed computation.

In the next section let us discuss in details the issues that the

methodology on this paper addresses to. In section 3 a

computational model appropriate for modeling interacting
software systems is defined. In section 4 the computational

model is used as a basis for providing a concrete definition of

context-aware systems. In section 5 we develop a modeling

On defining and modeling context-awareness

Panteleimon Rodis,
Hellenic Open University.

std123937@ac.eap.gr

https://pantelisrodis.blogspot.com

https://doi.org/10.1108/IJPCC-D-18-00003
mailto:std123937@ac.eap.gr
https://pantelisrodis.blogspot.com/

 2

methodology for systems of distributed computing with

context-aware capabilities. A case study of a context-aware

application is presented in section 6 demonstrating the

modeling capabilities of the definition proposed followed by

some discussion on section 7.

2. Issues on defining and modeling context

2.1 Context definitions

The research concerning context-awareness usually focuses on

computational systems that detect the environment they
operate in, which constitutes their context of operation, and

use this information to provide services to their users.

A comprehensive definition of a widely accepted perception

of context-awareness that summarizes a big part of the rich

literature on the subject is proposed in (Abowd et al., 1999).

“A system is context-aware if it uses context to provide

relevant information and/or services to the user, where

relevancy depends on the user’s task.”

This definition although comprehensive and sufficient restricts

context-awareness in systems that interact with users and have
a user-centric operation. It does not take into account software

components that use context-awareness in order to produce

information for other systems or other software components

besides users. Context under this consideration is restricted to

be a part of the user’s environment ignoring the cases where a

system is a part of a network or it supports distributed

computing operations and the context of the system is

extended beyond the user’s environment.

An interesting perception of context is presented in (Coulouris

et al., 2012). The authors identify that the physical

circumstance of a user or device may be relevant to the
behavior of a system that may be mobile or even distributed.

Context of an entity is then an aspect of its physical

circumstances of relevance to system behavior. In this

statement an entity may be a human, a place or a device and

its contextual information includes relatively simple values

that describe the environment of the entity as well as the state

of other associated entities. Contextual information is

perceived by sensors that detect the environment and other

entities.

This perception of context is closer to modern computational

systems. However, it does not determine the context of

autonomous software applications that interact with other
software components. A software application may be installed

in some cloud infrastructure, operate autonomously and

interact with other systems outside the cloud; for a survey

covering this kind of awareness see (Truong, 2009). The

context for this application is consisted of the systems that it

interacts. Interactions of this kind are achieved by exchanging

messages among the interacting systems, not by sensors, and

one system is not necessarily aware of the state of the other

systems that it interacts with.

Other works regard operational (Zimmermann, 2007) or

conceptual (Dourishl, 2004) definitions of context. In each of
them the authors define the use and perception of context by

the properties or the operation of the entities that constitute an

application and its context. These approaches suppress

generality and restrict the discussion by focusing on special

characteristics of the entities under investigation.

The above mentioned works reflect a wider approach of the

literature on the subject which avoids the use of mathematical
foundations in the discussion around the definition and the

essence of context-awareness. Since its early days, computer

science is based on mathematical foundations that provide a

solid basis for developing theory and practice. It would be

fruitful to follow this approach for the research around

context-awareness as well; this is a goal of this paper.

2.2 On the user-centric approach

Influenced by the vision of pervasive computing the

discussion around context and context awareness usually

adopts a user-centric orientation. Context-awareness in this

case is considered as a set of procedures oriented on detecting

the users environment, so as to collect the necessary

information which will then be used as input for operations

that provide services to the users.

The issue that is ignored in this perception is that there are

systems equipped with context-aware operations that operate

without users; or at least the users do not play a central role in

their operation. We may refer to autonomous systems and to

artificial intelligence (AI). Let us argue on this perception by
providing some examples.

If not already implemented, it is feasible to consider an AI

system that controls the floodgates of a dam equipped with a

hydroelectric power station. Such a system may take into

account the weather conditions, the volume of water on the

dam and the need for production of electric power in order to

adjust the floodgates so as to avoid flooding and achieve an

optimum performance for the station. This system is context-

aware and the users are really absent.

A simple example is also the goal for autonomous self-driving

cars. The goal is to produce cars that will serve the users
automatically. Autonomous cars need to detect their

environment, traffic, road and weather conditions in order to

achieve the goal of efficiently transporting passengers to a

predefined destination. In this example, if we replace

passengers with luggage it becomes clear that the existence of

users is not necessary.

Another common example includes software entities that

operate in a computer network, where their environment and

context is considered to be the network devices and the other

software components like network services. In this case the

software entities need to identify and monitor their artificial

environment and then interact with it in order to operate,
regardless if they eventually reach any users or not.

It is more useful to adopt a system-centric perception when

discussing context-awareness. On these examples, it becomes

clear that in many cases the users if not absent at least they do

not play a critical role in the operation of context-aware

systems.

 3

2.3 Distributed systems instead of standalone

applications

The discussion around modern system engineering should

move beyond stand alone systems and applications and

consider systems that support distributed computing. The

extensive use of networks and cloud infrastructures in modern

systems and the development of architectures like Platform as

a Service (P.a.a.S) and Software as a Service (S.a.a.S), see

(Dinh et al., 2013), leads to the development of distributed
systems rather than stand alone applications. In the work of

(Truong, 2009) the support of distributed computing is a

demanding need for every context modeling approach. In a

distributed system its components are hosted in different

locations interacting with each other, with other systems and

with context. On this basis, the framework presented in this

paper regards systems that support distributed computing.

3. A model of interactive computation

In this section let us describe computational systems using a
computational model, the model is valid for distributed and

stand alone systems. The advantage in this approach is a solid

definition for the system and its interaction with its context

which then may be used in the analysis of system structure and

operation. It is necessary to use computational models that

support interactive computation; this choice is enforced by the

interactive nature of the systems studied in this paper. Let us

then build a computational model on Turing Machines

enhanced with interactive and networking capabilities, called

Networked Turing Machine. The ideas that structure this

model derive from the choice machines of Alan Turing

(Turing, 1936) and from the interactive computation models of
Peter Wegner (Wegner, 1998) and Persistent Turing Machines

(Goldin, 2000).

A Networked Turing Machine m is a multi-tape Turing

Machine consisting of a working tape and a number of input

tapes. On the input tapes, m reads symbols printed from other

machines or other entities. The symbols on the input tapes

may be printed before or during the operation of m. Reading

and writing on an input tape f is performed by different

entities, two or more machines or other sources, so we have to

develop a mechanism that will handle the operation of the tape

properly.
Tape f is equipped with two heads; head-1 prints symbols on

the tape and it is control by the machines interacting with m;

head-2 reads the symbols and it functions in compliance with

the transition function of m. Both heads may scan the same

cell without conflicting but they may not operate at the same

time. Then f operates under the following rules

1. Initially all the cells in f have the blank symbol

printed on them.

2. Both heads initially move to the first cell.

3. On input of symbol s from machine n. Head-1 prints

s and moves to the right.

4. On request to read. If head-2 reads the blank symbol

stands still, otherwise reads the symbol and moves to

the right.

The working tape is used for performing computations as

specified on its transition function considering the symbols

read from the input tapes and the symbols on the working

tape. Machine m prints symbols on the input tapes of other

Machines; this is the useful output of the computations

performed on the working tape of m.

Definition. Networked Turing Machine m that consists of i

input tapes, one working tape and prints output on o input

tapes of other machines is an 6-tuple (Q, , , , q0, qf), where
1. Q is a finite set of states

2.  is a finite input alphabet, which includes the blank

symbol

3.  is the tape and output finite alphabet   

4.  : Q   → Q  (  {L, R, S})  (i  {R, S}i) 

(
o
  {R, S}

o
) the transition function

5. q0 is the start state
6. qf is the halting state

In the transition function, R indicates that the head of a tape

moves to the right, L to the left and S that the head stands still.

For the working tape all choices are valid. The heads in the

input tapes if not still move only to the right reading the

symbols already printed. The heads printing output symbols

also moves only to the right if not still.

As a computational model a Networked Turing Machine is as

powerful as a Turing Machine.

Equivalence theorem. Let m be a Networked Turing Machine
and r a one-tape Turing machine. Machine r may simulate the

operation of m and m may simulate the operation of r.

Proof. Machine m runs the transition function of r in its

working tape and thus simulates the operation of r the heads in

its input tapes stand still and there is no output produced.

Let h be a Turing machine that prints symbols on the input

tapes of m. We build l-tape Turing machine q that simulates

the operations of both m and h. In the first i tapes of q the

transition function prints symbols according to the transition

function of h. Tape i+1 is the working tape as in m. In the rest
tapes the output of m is printed. On this way q simulates the

operation of m and its interaction with given machine h.

The operation of every multi-tape machine may be simulated

by a one-tape machine and this stands for q and r as the

transition function of the tapes of m is clearly Turing

computable.

The advantage in using Networked Turing Machines to model

computational systems lays on the interaction capabilities that

they enclose. Let us next define interaction and networking

among Networked Turing Machines.

Connectivity. Machines m, n are considered connected iff m

may print symbols on the input tapes of n, then predicate

con(m,n) is true.

 4

Networking. Set N forms a network iff

() (,) (,)m n m N n N con m n con n m       .

Network N interacts with external source q when

() (,) (,)m q m N q N con m q con q m       .

Interaction among machines and the computations performed

in a network need to have some rhythm. The machines that
constitute a network simulate real world operations and real

world operations require some time to get executed. Real

world operations may run on hardware of different speeds.

Some operations will run on faster hardware than others and

this must be modeled in our network of Turing machines. So,

the times tb, tc that are required by machines b and c

respectively in order to transit between two consecutive states

in given moment d must form ratio d = tb / tc.
For this, on network N let us define fixed time step t and for

each machine m let us define number σm, so that each

transition between states as defined in the transition function

of m is executed in time tm = t / σm. As a result for b and c in d

stands that d = σc / σb. On this way each machine has its own
speed of operation and interaction with other machines. For
the case study in section V we consider all machines working

on the same speed.

The computational model presented so far may be used in

modeling computational systems. Let A be a computational

system and T a network of Networked Turing machines so that

each computational operation ai of A is simulated by a

Networked Turing machine i  T and every machine in T
corresponds to an operation of A. Interaction between the

distinct operations of A is modeled as interaction between

machines in T. The functionality of A may then be modeled as

a directed graph G = (T, I) where the elements of T are

denoted by the set of nodes of G and I is the set of directed

edges of the graph that denote the possible connections among
the elements of T; for con(i, j) there is directed edge in G from

node i to j.

The networked machines that we used, model the

computational operations of A and not the physical devices in

which they are carried. So, machine Ai may model an

operation carried in more than one computational devices of A

and any subsystem of A may execute more than one operations

modeled by more than one machine.

There is no real restriction on the level of detail that a system

may be modeled using Networked Turing machines. Each

procedure ai of A may be analyzed in a number of sub-

procedures {ai,1, ai,2, ...} that their operations constitute ai.
Whether a single machine m will be defined on T so as to

represent ai or a sub-network Ti will be developed on T so as to

represent the sub-procedures {ai,1, ai,2, ...} in details it is a

matter of choice for the system designer. Describing software

systems using networks of Turing machines provides the

system designers with the flexibility of actually presenting on

a model the level of details that they care to demonstrate about

their system. For system A we may build many networks

where each network models A in deferent level of details

addressing different recipients. This feature enables a scalable

approach in every system that is modeled.
Next, we define a framework for modeling the interaction

between A and its context.

4. Definition of context-awareness

Let e be the environment in which computational system A

operates. On the term “environment” we consider the physical

and artificial surroundings of A; the real, man-made or virtual
content of the space in which A is embodied.

We define set E as the set of variables that describe the

properties of e in any given moment. For any variable vi  E
we consider vector Vi = {vt, vt+1, vt+2….} which stores the

evaluations of vi in moments t, t+1, t+2 etc; where t is a fixed

time step. We then denote as vi,t the evaluation of variable vi in

moment t. It is reasonable to restrict the variables in E and the

evaluations stored in each Vi only to those that were valid

during the period of the operation of A. As a consequence, in a

changing environment e the elements of E change according to

the changes in e for any given moment. Set E then should not

be considered as a static factor in all systems but rather as a

dynamic set that may be subject to changes over time.
The type of the variables in E is not limited to numerical

variables but it has a more general sense. Any variable vi may

have any programmable accepted evaluation; any evaluation

that could be accepted by a Turing machine. Moreover, any

user interaction with A is denoted by a set of vectors that store

the parameters of the interaction in the time period of the

interaction. Users are part of e and their actions are described

by some variables in a subset of E. The information that users

enter in A modifies the input of some m  T.
Interaction of A with e is defined as the variation of some

variables in E as a cause of the operation of A. In this case,

there is operation a performed by A, simulated by Turing

machine Aa, and there is vector Vi in E so that for fixed t
evaluation vi,t equals the output of Aa in moment t. The

information that A displays to its users in time t causes the

variation of some variables of E.

Now let C be the set of all vectors Vi for environment e.

Definition of Context-Awareness. System A is Context-Aware

iff there is CA  C so that for each evaluation vi,t of vector Vi 

CA there is Ai  T that accepts vi,t and produces an output. Set
CA describes the context of A.

As analyzed in chapter 7 of Posland’s book about Ubiquitous

Computing (Poslad, 2011) for some systems there is the

notion of goal. A goal for system A is to produce desired

output o on input of context parameters that are measured
using context-awareness.

In many cases accessing the data that A actually needs to

produce a goal output is difficult or even impossible for a

variety of reasons technological, social or any other. In these

cases we are obliged to approximate the context of A so as to

achieve an effective approximation of our goal. On this basis

let us next define the notion of effective Context-Awareness.

Definition of effective Context-Awareness. System A is

effectively Context-Aware when during its operation it accepts

as input CA’  CA and produces an output relatively similar to
the output it produces when inputted CA.

 5

This definition provides a subjective criterion for effective

Content-Awareness. It is in the judgment of the system

designer to characterize the output of a system as “relatively

similar” to the goal and certainly the criteria of doing so are

case-dependent.

5. Modeling context-aware distributed

systems

5.1 Modeling literature

In literature, modeling context-awareness is built in more solid

ground than its definitions. Researchers use tools from

software engineering like UML, ontology and mathematical

logic (Baldauf et al., 2007) in order to develop efficient

modeling methodologies for context-aware systems.
The use of UML and object-oriented methodologies in

modeling context aims to provide a description of the

information that applications derive from their environments

and then how this information is used; see (Bardram, 2005),

(Bettini, et al., 2010), (Bikakis et al., 2007), (Henricksen et al.,

2003, 2006), (Kapitsaki et al., 2009), (Niu and Wang, 2016),

(Sheng and Benatallah, 2005), (Strang and Linnhoff-Popien,

2004), (Vale, 2008), (Yu et al., 2010). These approaches target

to building high level functional and conceptual descriptions

of applications and the way they treat context.

Other modeling frameworks include logic (McCarthy, 1993),

conceptual modeling languages (Hoyos et al., 2010, 2013) and
ontology (Baumgartner, 2005), (Korpipaa et al., 2003). These

methodologies provide conceptual approaches to what is

considered to be context for every application and it is useful

in the functionality of the application. These frameworks are

designed to model the services provided by each system and

the reason why they are built to function as they do.

The above frameworks, although valuable, do not relate

context-aware operations with the actual structure of the

system as they mostly focus on a description of the usability

and functionality of the system and the services it provides.

Also, most of them do not support modeling distributed
systems.

The methodology presented next aims to supplement the

above mentioned modeling methods by providing a different

perspective on describing distributed systems and their

interaction with context. It is suitable for building models that

emphases on system structure and the interactions among the

distinct component that constitute each system and its context.

This methodology maps the systems structure and describes in

details how each software component actually functions and

how it interacts with other components and with context.

In other words, instead of focusing on the questions “What

does the system do?” and “What is the reason that it operates
on this way?” let us focus on “Where each operation is

computed?” and “How does it work?”. This is achieved by

modeling each system as a network of Networked Turing

machines where each machine simulates one distinct

procedure of the system.

Especially on context-awareness, the benefit of using this

approach is the development of a detailed description of the

interaction between the system components and the context.

As each machine simulates an algorithmic procedure built in

the system, the produced model describes the way that

context-awareness is achieved; not just the input and output

entities of the procedures but also the details of how the

application interacts with context.

5.2 Model formalism

The methodology produces models that follow the symbology

and structure that is next presented.

Symbology
: binary operator of equivalence

// comments or short descriptions

→, ↔, ← data flow

Structure

abstract. Text in plain language, it provides a description of

the functionality of the system.

procedures. List and descriptions of the procedures executed

in the system. Each one carries specific tasks and is

represented in the model by one Networked Turing machine; it
has an alphanumeric label in square brackets. In the graphs of

the model each procedure is denoted by one node that has a

numeric label e.g.

1 : [input] // user input

2 : [screen_display] // screen display

In this section designers may also include documentation

about the algorithmic operations executed in each procedure.

Documentation may include UML diagrams, pseudo code or

any other document that efficiently describes the procedures.

context. Context entities and external sources. Each entity and

source may output vectors of CA in one or more procedures.
Also it may accept the output of procedures and change some

the valuation in some vectors of CA. Context labels are placed

in parentheses. Their corresponding nodes in the graphs are

labeled with letters e.g.

a : (location) // user or device location

connections. Connections among system procedures and

between procedures and external sources. Connections in the

model denoted like in the following examples.

con(input, screen_display) : [input] → [screen_display]

con(location, GPS_unit) : [GPS_unit] ← (location)
con(server, client) ˄ con(client, server) : [server] ↔ [client]

graphs. One or more graphs that represent procedures, context

and connections.

6. A case study

Let us present two models for web application “WMS Map

Viewer” (Rodis, 2017). The first model describes the

application abstractly while the second provides a more

refined description of the application. On this way we

demonstrate how scalable models may be produced.

 6

Model 1

abstract. “WMS Map Viewer” is a web application served by

a cloud infrastructure and executed in any client device

displaying web maps to its screen. Its functionality is to

display interactive web maps on client devices. The

application detects user interaction, user location and screen
parameters. Then the app downloads the web maps requested

by the user from the web services that provide them. Upon

download, the application adjusts the maps on client device

screen and displays them. Also the maps may be centered on

user’s location.

procedures.

1 : [soft_serve] // Software served by cloud infrastructure

9 : [client_app] // The application running on client

context.

a : (user) // user of the client device

b : (location) // location unit (GPS) of client device

c : (screen) // screen of client device

d : (providers) // web map providers

connections.

[soft_serve] ↔ [client_app]

[client_app] ← (user) // detects user interaction

[client_app] ← (location) // retrieves location

[client_app] ↔ (screen)

// detects screen parameters and displays map content

[client_app] ↔ (providers)

// request and then downloads web maps from the providers

graph.

A graph for model 1

Model 2

abstract. “WMS Map Viewer” is an http / JavaScript web
application for viewing and indexing web maps. The

application is provided as SaaS (Software as a Service) served

by a cloud infrastructure and it is designed so as to provide

ubiquitous access to web maps for its users. In this case, the

term “ubiquitous access” is used in the sense that the users of

the application may access the content of web maps from any

web enabled device; whether it is an old mobile phone and the

users are on the field or a high-end system and the users are on

their offices or labs. In all of these occasions the users will

have the same quality of service using the application and the

application will provide the same functionality through a User

Interface (UI) that adapts the displayed content to the screen

of each device.
The cloud infrastructure serves only the appropriate software

components depending on the client device and the user

requested functionality. Serving more software components

than those that are necessary would increase network traffic

and slow down the operation of low resources devices without

any benefit. Also, the application detects user interaction so as

to provide the desired content to the user and also detects the

location of the user, after acquiring permission, so as to

display the map content of the user’s location.

procedures.

1 : [soft_serve]

// software served by cloud infrastructure

2 : [soft_download]

// the application running on client downloads the necessary

software components

3 : [param_detection]

// a procedure running on client detects device parameters

asks for necessary UI

4 : [map_display]

// map content is adjusted and displayed on screen

5 : [get_location]

// location data are retrieved from device

6 : [user_detection]

// user interaction is detected

7 : [map_request]

// web maps are requested from external sources

8 : [get_map]

// web map content is downloaded from external sources

context.

a : (user) // user of the client device

b : (location) // location unit (GPS) of the device

c : (screen) // screen of client device

d : (providers) // web map providers

connections.

[soft_serve] ↔ [soft_download]

// cloud infrastructures accepts as input the request for

serving software components and then uploads the necessary

software on the client.

(screen) → [param_detection]

// a procedure running on client device accepts as input the

screen parameters of the client device.

[param_detection] → [soft_download]

// based on screen parameters the necessary software is

downloaded from cloud
[soft_download] → [map_display]

// the necessary software components are downloaded on

the device so as to properly display map content

b

c

d

a

Network

A

1 9

Context

 7

[map_display] → (screen)

// map content is adjusted and displayed on client screen

(user) → [user_detection]

// procedure [user_detection] accepts the variables of CA

that describe user interaction

(location) → [get_location]

// the application retrieves GPS data.

[get_location] → [map_request]

[user_detection]→ [map_request]

// based on user interaction and user’s location the client

forms requests for web maps from map providers.
[map_request] → (providers)

// web maps are requested form map providers.

(providers) → [get_map]

// web maps are downloaded from external sources.

[get_map] → [map_display]

// downloaded web maps are inputted on map display

procedure.

graph.

A graph that models the operation of WMS Map Viewer in

details, model 2.

7. Discussion

The model of Networked Turing Machines extends current

computational models by enclosing networking and

interaction capabilities in the computational units. Using this

model it is easy to describe distributed systems and systems of

parallel processing as well as their interaction with external

sources and other systems. These capabilities make this model

ideal for describing context-aware applications and map their

internal structure.

Computational complexity for context-awareness may also be

studied using the above models. For instance, if a procedure

requires exponential time to be completed then this affects the

performance of the whole system. In particular, if the

procedure of detecting some parameter of context corresponds

to solving some worst case scenario of a problem in the NP
complexity class, then the output of the system to the users or

to other systems may not be computed efficiently.

The definitions of context and context-awareness presented

in this paper are based on the theory of computation rather

than a description of these notions in plain language as it

usually happens on the literature of this field. On this way the

above definitions are built on solid ground avoiding vagueness

that may arise from unclear or disputed descriptions. The

modeling methodology and the case study presented in the

previous sections reveals the robustness of the models and

definitions of this paper and provide a detailed map of the

functionality of the system under study.

References

Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M. and

Steggles, P. (1999), Towards a better understanding of context

and context-awareness. In Handheld and ubiquitous

computing (pp. 304-307). Springer Berlin/Heidelberg.

Baldauf, M., Dustdar, S. and Rosenberg, F. (2007), A survey

on context-aware systems. International Journal of Ad Hoc
and Ubiquitous Computing, 2(4), pp.263-277.

Bardram, J.E. (2005), The Java Context Awareness

Framework (JCAF)-A Service Infrastructure and

Programming Framework for Context-Aware Applications. In

Pervasive (Vol. 3468, pp. 98-115).

Baumgartner, N. and Retschitzegger, W. (2006), A survey of

upper ontologies for situation awareness. In Proc. of the 4th

IASTED International Conference on Knowledge Sharing and

Collaborative Engineering, St. Thomas, US VI (pp. 1-9).

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas,

D., Ranganathan, A. and Riboni, D. (2010), A survey of

context modelling and reasoning techniques. Pervasive and

Mobile Computing, 6(2), pp.161-180.

Bikakis, A., Patkos, T., Antoniou, G. and Plexousakis, D.

(2007), November. A survey of semantics-based approaches

for context reasoning in ambient intelligence. In European

Conference on Ambient Intelligence (pp. 14-23). Springer,

Berlin, Heidelberg.

Coulouris, G.F., Dollimore, J. and Kindberg, T. (2005),

Distributed systems: concepts and design. pearson education.

Dinh, H.T., Lee, C., Niyato, D. and Wang, P. (2013), A survey

of mobile cloud computing: architecture, applications, and

Network

A

Context

7

1

2
3

b

c

d

4

6

5

8

a

 8

approaches. Wireless communications and mobile computing,

13(18), pp.1587-1611.

Dourish, P. (2004), What we talk about when we talk about

context. Personal and ubiquitous computing, 8(1), pp.19-30.

Goldin, D.Q. (2000), Persistent Turing machines as a model of

interactive computation. In International Symposium on

Foundations of Information and Knowledge Systems (pp. 116-

135). Springer, Berlin, Heidelberg.

Henricksen, K., Indulska, J. and Rakotonirainy, A. (2003),

Generating context management infrastructure from high-level

context models. In In 4th International Conference on Mobile

Data Management (MDM)-Industrial Track.

Henricksen, K. and Indulska, J. (2006), Developing context-

aware pervasive computing applications: Models and
approach. Pervasive and mobile computing, 2(1), pp.37-64.

Hoyos, J.R., García-Molina, J. and Botía, J.A. (2010),

MLContext: a context-modeling language for context-aware

systems. Electronic Communications of the EASST, 28.

Hoyos, J.R., García-Molina, J. and Botía, J.A. (2013), A

domain-specific language for context modeling in context-

aware systems. Journal of Systems and Software, 86(11),

pp.2890-2905.

Kapitsaki, G.M., Prezerakos, G.N., Tselikas, N.D. and

Venieris, I.S. (2009), Context-aware service engineering: A

survey. Journal of Systems and Software, 82(8), pp.1285-

1297.

Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H. and Malm,

E.J. (2003), Managing context information in mobile devices.

IEEE pervasive computing, 2(3), pp.42-51.

McCarthy, J. (1993), Notes on formalizing context.

Niu, X. and Wang, Z. (2016), A Smart Home Context-aware
Model Based on UML and Colored Petri Net. International

Journal of Smart Home, 10(1), pp.101-114.

Poslad, S. (2011), Ubiquitous computing: smart devices,

environments and interactions. John Wiley & Sons.

Rodis, P. (2017), “WMS Map Viewer”, available at:

https://wms-viewer-online.appspot.com/ (accessed September

2017).

Sheng, Q.Z. and Benatallah, B. (2005), ContextUML: a UML-
based modeling language for model-driven development of

context-aware web services. In Mobile Business, 2005. ICMB

2005. International Conference on (pp. 206-212). IEEE.

Strang, T. and Linnhoff-Popien, C. (2004), A context

modeling survey. In Workshop Proceedings.

Truong, H.L. and Dustdar, S. (2009), A survey on context-

aware web service systems. International Journal of Web

Information Systems, 5(1), pp.5-31.

Turing, A.M. (1937), On computable numbers, with an

application to the Entscheidungsproblem. Proceedings of the
London mathematical society, 2(1), pp.230-265.

Vale, S. and Hammoudi, S. (2008), Context-aware model

driven development by parameterized transformation.

Proceedings of MDISIS, pp.167-180.

Yu, J., Sheng, Q., Liao, K. and Wong, H. (2010), Model-

driven development of context-aware web services. CRC

Press.

Wegner, P. (1998), Interactive foundations of computing.

Theoretical computer science, 192(2), pp.315-351.

Zimmermann, A., Lorenz, A. and Oppermann, R. (2007), An

operational definition of context. Context, 7, pp.558-571.

https://wms-viewer-online.appspot.com/

	Abstract
	1. Introduction
	2. Issues on defining and modeling context
	2.1 Context definitions
	2.2 On the user-centric approach
	2.3 Distributed systems instead of standalone applications

	3. A model of interactive computation
	4. Definition of context-awareness
	5. Modeling context-aware distributed systems
	5.1 Modeling literature
	5.2 Model formalism

	6. A case study
	7. Discussion
	References

