
Intelligent Network Service Embedding
using Genetic Algorithms

Panteleimon Rodis and Panagiotis Papadimitriou
University of Macedonia, Greece
{rodis, papadimitriou}@uom.edu.gr

Abstract—Network Function Virtualization (NFV) opens us
great opportunities for network processing with higher resource
efficiency and flexibility. Nevertheless, intelligent orchestration
mechanisms are required, such that NFV can exploit its potential
and fill up to its promise. In this respect, we investigate the
potential gains of embracing Artificial Intelligence (AI) for the
virtual network function (VNF) placement problem. To this end,
we design and evaluate a genetic algorithm, which seeks efficient
embeddings with runtimes on par with heuristic methods. Our
proposed embedding method exhibits innovations in terms of
network representation and algorithm design, thereby, deviating
from typical genetic algorithms. Compared to a heuristic, the
proposed genetic algorithm yields higher request acceptance
rates, stemming from more efficient resource utilization. We
further study a range of factors and parameters that affect the
efficiency of the genetic algorithm.

I. INTRODUCTION

Network Function Virtulization (NFV) decouples network
functions from the underlying specialized devices, known as
middleboxes, which are commonly deployed in enterprise and
telco networks [1], [2], [3]. As such, network functions, such
as firewalls, proxies, network address translation (NAT), intru-
sion detection, and redundancy elimination, can be deployed
using software that runs on virtualized commodity servers
[4]. Such virtualized network functions (VNFs) can be either
executed on the network operator’s premises or can be leased
from cloud providers, in the form of Network Function-as-a-
Service [5], [6], [2], [7], [8]. In this respect, NFV enhances
flexibility and resource efficiency compared to middleboxes,
whereas it also spurs innovation by lowering the barrier for
introducing new functionality into the network.

A key requirement for the deployment of VNFs, either on
private datacenters or on public cloud infrastructures (usually
termed as NFV infrastructure – NFVI), is VNF-graph em-
bedding, i.e., the assignment of VNFs and the corresponding
VNF-graph edges onto the respective NFVI counterparts (i.e.,
servers and network paths). The general case of this problem
(i.e., topology embedding) is known to be NP-hard [9] and not
efficiently solvable, even when polynomial boundaries [10]
or restrictions [11] are applied on the problem parameters.
The problem complexity is retained even for special types of
substrate network topologies [12].

VNF-graph mapping optimization has been mainly tackled
using heuristics [13], [6], [8] and exact methods [14], [5],
[15], [16], [7], [17]. Heuristics and greedy algorithms generate

embeddings with typically low solver run-times, but usually
at the expense of a considerable optimality gap. On the
other hand, exact methods may achieve near-optimal solutions;
however, their associated computational complexity introduces
significant scalability limitations. As such, exact methods
constitute a feasible approach only to small-scale embeddings.

Artificial intelligence (AI) comprises a promising alternative
to these VNF-graph embedding methods, since it can generate
efficient solutions under an acceptable solver run-time [18],
[19]. In this respect, we study genetic algorithms as an
alternative approach to the VNF-graph embedding problem.
Genetic algorithms have been very rarely employed for topol-
ogy embeddings; hence, their applicability and efficiency is not
well understood. As such, we aim at shedding light into the ef-
ficacy of genetic algorithms on network service embedding by
examining a variety of factors and their impact on embedding
efficiency using simulations. Our proposed genetic algorithm
yields adaptability in different types of network topologies,
based on evaluations conducted on structured (i.e., fat trees)
network topologies.

The remainder of the paper is organized as follows. Sec-
tion II provides background information on genetic algorithms.
In Section III, we present the network and request models
utilized in the design of the proposed genetic algorithm. We
further introduce an innovative representation of edge vectors
with the aim of reducing memory consumption. In Section IV,
we discuss in detail the VNF-graph embedding problem and
our proposed solution. In Section V, we discuss the efficiency
of the proposed genetic algorithm based on simulation results.
Finally, Section VI highlights our conclusions.

II. GENETIC ALGORITHMS

Genetic algorithms are optimization techniques inspired by
Darwin’s theories on the evolution of species. They provide
efficient solutions in computationally hard problems, such
as combinatory NP-hard problems [20]. Initially, a genetic
algorithm generates a population of possible solutions. The
population is usually generated randomly, but may also be the
product of a heuristic procedure [21]. Our proposed solution
employs both methods. The members of the population are
called chromosomes; this name implies that the functionality
of the algorithm simulates biological procedures. Every chro-
mosome is a string that encodes a possible solution and every
symbol of the string is called gene. A crucial factor for the

978-1-6654-2744-9/21/$31.00 ©2021 IEEE

operation of the algorithm is the fitness function, which defines
the criterion for the margin between the solution encoded
in a chromosome and the desired solution. The algorithm
iteratively executes the following procedures.

Selection. This step simulates the procedure of natural selec-
tion, at which the stronger members of a population survive in
the next generation while the weakest members do not survive.

Crossover. During the procedure of crossover, two chromo-
somes exchange parts of their genetic material that are ran-
domly chosen and generate offspring that represents different
solution than their parents.

Mutation. The procedure of mutation refers to the random
change of the value of a gene, similar to the biological
notion of mutation. Mutation may generate solutions that are
not produced by crossover, thereby, directing the search in
different parts of the search space.

Each round of sequential execution of the procedures is
called generation. Eventually, the population becomes ho-
mogeneous converging to a strong solution. This outcome
stems from the fact that the chromosomes of higher fitness
prevail through the procedure of selection over the weaker
chromosomes. The genes that are primarily responsible for
the high fitness are spread through crossover to a large part of
the next generation population.

III. NETWORK MODEL AND REPRESENTATION

A. Network and Request Model

Network Model. For the substrate network, we define the
graph Gs(Vs,Es), where Vs denotes the set of compute nodes
(e.g., servers) at which VNFs can be hosted. The edges in Es
represent the network links. Every edge p(u, z) ∈ Es denotes
the shortest path that connects the nodes u, z of the substrate
network. In every substrate node s, we assign a weight ws
which denotes its residual capacity. For the edges of the
substrate network graph, we define two properties in the form
of weights, i.e., the available bandwidth of the substrate links
and the respective communication cost, which is proportional
to the hop-count of the path between each pair of nodes. In this
respect, we assign in p the weight wp denoting the available
bandwidth on the link and the weight h for its communication
cost.

Request Model. Each request consists of the VNF-graph,
modeled by Gv(Vv,Ev). Each node n ∈ Vv denotes a VNF,
whereas its weight wn expresses its computing demand. We
further model each edge between VNFs a and b of the
VNF-graph, as e(a, b). The weight we denotes the bandwidth
demand for each edge of the VNF-graph. The assignment of
the VNF-graph elements is represented by an n-dimension
vector H, where n is the order of the VNF-graph. In position
i of H, we place the value of node s ∈ Vs, which hosts the
node i ∈ Vv.

Fig. 1: Edge vector representation: G : 〈110011〉.

B. Edge Vector Representation

Graph representation is crucial for the efficiency of the
algorithm, as the substrate and the service chain topology are
modeled as graphs. More precisely, the choice of graph repre-
sentation can be mandated by the memory demands of storing
a graph and the computational burden of encoding and de-
coding the elements of the graph in the chosen representation.
The most common representations are the adjacency matrix,
the edge list, and the adjacency list [22]. These representations
yield high memory demands and, thereby, are not suitable for
our genetic algorithm. Instead, we propose a new graph rep-
resentation that requires significantly lower memory, whereas
encoding and decoding is of linear computational complexity.
This representation is termed as Edge Vector. In the following,
we provide definitions for representing undirected and directed
graphs in this form.

Edge vector for undirected graph. Let s be a vector that
represents undirected graph G(V, E), consisting of v nodes.
We further enumerate the elements of s in the range [0, e),
where e = v(v − 1)/2 is the maximum possible number of
edges in G. The symbol in position q of s is w, if nodes
a and b are adjacent and 0 if they are not adjacent, where
q = a +

∑b−1
x=0 x, for a < b and a, b ∈ [0, v). The value of

w is set to 1 for non-weighted graphs, whereas for weighted
graphs the respective value corresponds to the weight of the
edge (a, b) (see the example in Fig. 1).

Edge vector for directed graph. Let vector d represent the
weighted graph G(V, E) and let us also enumerate its elements
in the range [0, e). In position q of d, as q is defined above,
and for non-weighted graph G we assign 0, if nodes a and b
are not adjacent, whereas we assign 1 for a→ b, 2 for b← a
and 3 for a←→ b. For weighted graphs, we place 0, 1w, 2w
and 3w, respectively, where w is the weight of the edge (a,
b), for a < b and a, b ∈ [0, v). In the case of graph G with
weighted nodes, the node weights are stored in a Node Weight
Vector. Therefore, in vector k:〈w0,w1, . . . , wv〉 the value wi
represents the weight of node i.

We examine the descriptive complexity of the aforemen-
tioned representations. The complexity is estimated by the
number of symbols required in each case for the representation
of graph G(V,E) of n nodes, k edges and average node degree
g.

• The adjacency matrix requires a binary matrix of size
n× n. The size of the representation is n2 symbols.

• In the edge list, each edge (i, j) is represented by the
numbering of nodes i and j. Let m be the average length
of a string that represents the number of a node, the size
of the representation is k× 2× m symbols.

• Each record of the adjacency list stores the adjacent nodes
of one node. Let m be the average length of a string
that represents the number of a node. The size of the
representation is then n× g× m symbols.

• In the edge vector, each graph G is represented by n(n−
1)/2 symbols.

For dense graphs, where k→ n(n− 1)/2 and g→ (n− 1),
edge vector provides the shortest representation. Only in
the cases of sparse graphs the edge list representation has
significant advantages. Our work mainly considers full and
dense graphs. The computational complexity of encoding and
decoding graphs in the edge vector representation is not infe-
rior to the complexity of other representations. As shown in the
following algorithms, both procedures yield linear complexity.

The inputs in Algorithm 1, which describes the encoding
procedure, are two adjacent nodes a, b in G. The output is the
place of the edge in the edge vector. In Algorithm 2, the input
is the place q of an edge in the vector, whereas the output is
the pair of the adjacent nodes of G.

Algorithm 1 Encoding

Input: nodes a, b where a < b
Output: place of edge (a, b) in vector

1: x = (b(b− 1))/2
2: return x+ a

Algorithm 2 Decoding

Input: edge q in vector
Output: nodes that q connects

1: y = round down(
√
2q)

2: increment y
3: x = q − ((y2 − y)/2)
4: if x < 0 then
5: decrement y
6: x = q − (y2 − y)/2)
7: result = {x, y}
8: return result

Implementations of the algorithms in Java and JavaScript
are available online in [23]. We compare our edge vector
representation against a set of graphs generated for a DIMACS
challenge [24]. The DIMACS graph format is based on the
edge list representation. We exclude the sparse graphs and
convert the 69 dense graphs of the set using Algorithm 1. The
edge vector representation leads to a significant reduction in
the number of symbols by 72.75% and, also in the size of the
generated files by 53.87%, on average.

IV. PROBLEM DEFINITION AND SOLUTION

A. Problem definition
Let weighted graphs Gs(Vs,Es) and Gv(Vv,Ev) model

the substrate and the service chain topology respectively, as
defined in Section III-A. We define the mapping m of the
nodes in Vv to the nodes of subset V’s ⊆ Vs, such that:

∀n∃z→ n ∈ Vv ∧ z ∈ V’s ∧ c(n, z)

where c(n, z) denotes that node n corresponds to z. By m we
define the mapping of the edges of Gv to edges of Gs, so that

∀e(a, b)∃p(u, z)→ e(a, b) ∈ Ev∧p(u, z) ∈ Gs∧c(a, u)∧c(b, z)

where e(a, b) is the edge connecting nodes a, b of Gv, while
p(u, z) is the path connecting nodes u and z of Gs. This
represents the shortest path of the substrate network that
connects the two nodes.

Let wz, wn be the weights of nodes z and n, respectively,
and wp, we the weights of edges p(u, z) and e(a, b). By h we
also define the communication cost of using p. The efficiency
of the mapping is therefore defined as:

Cm =
∑

(wz − wn) +
∑

[(wp × h)− we]

Equation Cm corresponds to the fitness function of the genetic
algorithm and expresses the efficiency in terms of resource
utilization and cost. The value of the difference wz − wn
represents the efficiency in using the available resources of
node z of the substrate network. Similarly, the difference
wp − we expresses the efficiency in utilizing the available
bandwidth of link p. The value of wp × h corresponds to the
cost of using path p, where h is the hop-count of the path. The
value of Cm is minimized when all VNFs are co-located on
the same substrate node. The problem at hand is then defined
as: Find m that min(Cm).

B. Genetic algorithm

During the development of genetic algorithms, various crit-
ical issues are raised that are inherent in the nature of genetic
algorithms. In order to address them, it is often necessary to
apply variations on the typical design of the genetic algorithms
[21], [25].

Maintenance of efficient solutions. In the common approach,
the procedures of crossover and mutation modify the genotype
of the population without preserving the initial chromosomes.
This design may fail to preserve an efficient solution on
the population that may take part to mutated or crossover
procedures. This issue can be resolved by including in the
same population both the parents and their offspring.

Premature convergence to local optima. A significant issue
concerning genetic algorithms in general is the convergence
to an undesired solution. This stems from the restriction of
the search in a part of the state space that contains only local
optima. In this case, the population becomes homogeneous,
before converging to the optimal solution.

The technique developed for the avoidance of premature
convergence, in our work, is based on the concept of compe-
tition that takes place in stages and in sets of competitors.
The competitors that prevail in each set form the groups
of competitors that will compete in the next stage of the
competition. The winners of the group stage are nominated in
the last stage of the competition, which designates the stronger
competitor as the winner of the competition.

The genetic algorithm is executed in n groups of n sets
of chromosomes. In each set, there are p chromosomes that

constitute the population for the algorithm that is executed
for g generations. The best solution generated in each set is
promoted to form the population of the group that it belongs.
Subsequently, in each group, the algorithm is executed over the
population generated in the sets. The final output is computed
by executing the algorithm on the population generated on the
groups. In this method, the algorithm combines in the group
stage the local optima discovered in the sets, avoiding the
confinement within a single local optimum. Simulation results
demonstrating the advantages of this technique are presented in
Section V-C. A benefit of this approach is that computations in
sets and groups can be executed in parallel, thereby, reducing
solver run-time in multi-core servers.

The operation of the genetic algorithm consists of the
generation of an initial population of chromosomes and the
iterative execution of the genetic procedures, as shown in
Algorithm 3. The population is generated randomly and also
the result of a heuristic is handled as input in order to include
the exploration of parts of the search space that are expected
to lead to an efficient solution. Our simulation results show
that the genetic algorithm could efficiently adapt in random
substrate network topologies. Instead, in structured topologies
(i.e., fat trees) the algorithm is not so efficient. This limitation
can be overcome by using a heuristic for the generation of
some members of the initial population. This heuristic is
described in detail in Section V-B.

The execution of the genetic procedures in each chromo-
some depends on its fitness, computed by fitness function Cm.
For the formation of sets and groups and their computation, we
use two parameters called generations and supergenerations.
These two parameters determine the iterative structures of the
algorithm. The thresholds of mutation and crossover probabili-
ties along with a random number generator determine whether
the two procedures are executed in every chromosome. In the
following, we elaborate on the three genetic procedures.

Selection. The selection procedure, described in Algorithm
4, is executed only if the population is not homogeneous;
otherwise, its execution is pointless. Whereas the procedures
of crossover and mutation increase the population in the
current generation, selection maintains a constant size for the
population of the next generation. We maintain a population
of constant size in order to control the complexity of the algo-
rithm. Homogeneity is evaluated by computing the deviation
of the population fitness. If the population is deemed to be
heterogeneous, the fitness of each chromosome is computed
and if its value is computed less than c, the chromosome is
added in the future population. This occurs for c=m+(d× p),
where m is the value of the strongest chromosome of the
current population, d the deviation of the fitness values of
the population, and p is a randomly generated value.

Crossover. For every pair of sequentially chosen chromo-
somes (e.g., i, j), we generate a random value p. If p is smaller
than the crossover probability, the two chromosomes produce
two offsprings. Given a random number h, chromosome i
copies its first h genes to the first offspring and the rest to the

Algorithm 3 Genetic Algorithm

Input: graphs Gs,Gv, generations, supergenerations
Output: best chromosome

1: run init1()
2:
3: Procedure init1()
4: for t = 0 to supergenerations do
5: for s = 0 to supergenerations do
6: generate population1
7: run init2(population1)
8: store best chromosome in population2
9: run init2(population2)

10: store best chromosome in population3
11: run init2(population3)
12: return best chromosome
13:
14: Procedure init2(population)
15: compute deviation in population
16: if deviation > 0 then
17: for i = 0 to generations do
18: run crossover(pop)
19: run mutation(pop)
20: run selection(pop)
21: return best chromosome

Algorithm 4 Selection

Input: population pop, newpop maxsize
Output: new population newpop

1: compute deviation in population
2: if deviation > 0 then
3: while newpop.size < newpop maxsize do
4: generate random value p
5: c =(minimum pop fitness)+deviation× p
6: for i = 0 to pop.size do
7: if pop[i].fitness< c then
8: add pop[i] to newpop
9: return newpop

second one. Likewise, chromosome j copies its first h genes to
the second offspring and the rest to the first one (see Algorithm
5).

Mutation. This procedure is sequentially executed in every
chromosome. If a randomly generated value p is smaller
than the mutation probability, a copy of the chromosome is
generated and mutated. A gene of the copied chromosome is
randomly chosen and a random value is assigned to it. The
mutated chromosome is added to the population, as described
in Algorithm 6.

C. Parameter Adjustment

The functionality of a genetic algorithm is determined by
various parameters, such as the population size, the crossover
and mutation probabilities, the number of generations, and, in
our case, the supergeneration parameter. Identifying appropri-

Algorithm 5 Crossover

Input: population pop, crossover probability c
Output: new population newpop

1: l =chromosome length
2: for i = 0 to pop.size-1 with step 2 do
3: add pop[i], pop[i+1] to newpop
4: generate random value p ∈ [0, 1]
5: if p ≤ c then
6: generate empty chromosomes temp1, temp2
7: generate random value h ∈ [0, l)
8: add genes 0 to h of pop[i] in temp1
9: add genes h+1 to l of pop[i+1] in temp1

10: add genes 0 to h of pop[i+1] in temp2
11: add genes h+1 to l of pop[i] in temp2
12: add temp1, temp2 to newpop
13: return newpop

Algorithm 6 Mutation

Input: population pop, mutation probability m
Output: new population newpop

1: l =chromosome length
2: for i = 0 to pop.size do
3: add pop[i] to newpop
4: generate random value p ∈ [0, 1]
5: if p ≤ m then
6: generate random values h ∈ [0, l), n
7: place n in gene h of pop[i]
8: add pop[i] to newpop
9: return newpop

ate values for these parameters entails a significant challenge
and is also subject to the problem that the genetic algorithm
is applied on. We approach this parameter adjustment as
an optimization problem and, thereby, have implemented a
genetic algorithm in order to determine near-optimal values.
This algorithm is described in Section IV-B. At first, we
investigate optimal values for the crossover and mutation prob-
abilities and, subsequently, we employ these values to properly
adjust the parameters for the population size, generations,
and supergenerations. In each phase, the chromosomes are
set to the values of the parameters under study. The fitness
function is computed by running instances of the VNF-graph
embedding algorithm with the values of the parameters stored
in every chromosome. The objective of this tuning procedure
is to identify the parameters of the embedding algorithm that
would lead to the minimum embedding cost.

The crossover and mutation probabilities generated by this
tuning procedure are 0.59 and 0.78, respectively. We compared
these values against typical values (i.e., 0.85 for crossover
probability and 0.05 or less for mutation), as well as with
a setup where both probabilities are set to 1. We find that
our optimized setup (0.59, 0.78) yields embedding efficiency
on par with both values set to 1, due to a more thorough
exploration of the search space. In contrast, employing the

TABLE I: Optimal parameter setup.

nodes of VNF-graph chromosomes generations supergenerations
5 148 40 6
6 176 156 4

7 - 8 132 42 6
9 - 10 244 86 6

typical values (0.85, 0.05) yields lower efficiency and insta-
bility (i.e., results vary significantly across different runs),
due to more frequent premature convergence to local optima.
The same tuning algorithm is also used on population size,
number of generations, and supergenerations (see Table I for
the respective parameter values).

V. EVALUATION

A. Evaluation Environment

The algorithm and the evaluation environment are imple-
mented in Java 8 and executed on a computer with dual-core
CPU at 2.60 GHz and 4 GB RAM. The simulated topology is a
3-layer fat-tree datacenter network topology, which comprises
a common NFVI. The simulated substrate network consists of
250 servers, each one with 10 GHz computing capacity. The
capacity of links connecting the servers with the Top-of-the-
Rack (ToR) switches is 1 Gbps, whereas the links at the upper
layers of the topology have capacity 10 Gbps.

Each VNF-graph request consists of a diverse number of
nodes, picked randomly within the range of 5 to 10. The
computing demand for each VNF in the request varies between
2 and 6 GHz. Likewise, the bandwidth demands in the
VNF-graph vary between 20 and 100 Mbps. The VNF-graph
requests are expiring. In particular, after 90 requests have been
embedded into the substrate network, an embedded VNF-
graph is randomly selected and removed from the network.
This occurs for every incoming request, after the first 90
requests.

Before the arrival and processing of VNF-graph requests,
traffic load is randomly inserted in the datacenter, which
resembles real conditions at which a NFVI will not be entirely
unutilized. In particular, CPU load equal to 50% of the com-
putational capacity is inserted to 10% of the nodes, whereas
traffic equal to 50% of the bandwidth capacity is injected to
10% of the network paths. Our simulation scenario handles
the embedding of 6000 requests, which are either accepted
or rejected, depending on the outcome of each executed
algorithm.

B. Comparison Method

To assess the efficiency of our proposed genetic algorithm,
we perform a comparison against a baseline algorithm, which
strives to achieve VNF consolidation. More precisely, the base-
line is a greedy algorithm that sorts the nodes of the substrate
network and the VNF-graph in descending order based on their
weights. Subsequently, in every substrate node of the sorted
list with the largest available capacity, the algorithm maps
sequentially the VNFs with the largest computing demand that
can fit into the respective node, while taking into account also

Fig. 2: Request acceptance rates of diverse GA variants.

bandwidth constraints. The algorithm terminates as soon as
all VNFs have been mapped. If the mapping is not feasible
(i.e., when either the computing or bandwidth demands are
not met), the execution of the algorithm is terminated with
the rejection of the request.

The generated mapping from the greedy algorithm (when
feasible) is included in the initial population of the genetic
algorithm. More specifically, it is employed as a heuristic for
the generation of one member of the initial population. As
shown in the following, this technique empowers the genetic
algorithm to adapt to the structured topology of the network
and generate more efficient solutions.

C. Evaluation Results

Our proposed algorithm uses an initial population of 250
chromosomes, whereas the generations and supergenerations
parameters are set to 25 and 2, respectively. This leads to
balance between efficiency and solver runtime (i.e., 85 ms per
request, on average). Furthermore, in each request, the output
of the greedy algorithm is inserted in the initial chromosome
population. The crossover and mutation parameters are set to
their optimal values, as computed by the tuning procedure
described in Section IV-C.

Fig. 2 illustrates the request acceptance rate for different
variants of the genetic algorithm (GA). Using the GA without
the heuristic for the generation of the initial population yields
low acceptance rates. This stems from the fact that the search
space is not directed to any specific areas, and, thereby,
the algorithm fails to adapt effectively in the search space.
Next, we focus on the comparison between three other GA
variants, which employ the heuristic and lead to notably higher
acceptance rates. GA with heuristic and structure and GA
with heuristic without structure differ in the sense that the
former utilizes the structure of procedures of sets and groups,
exemplified in Section IV-B. This structure of procedures
enables a more advanced search of the feasible solution space,
generating better embeddings with higher acceptance rates, as
shown in Fig. 2. Last, the Optimized GA is adjusted based
on the the optimal setup of Table I, yielding acceptance rates
approximately at 99%, but at the expense of runtime (over 1
sec per request, in our system).

Fig. 3: Request acceptance rates of the GA and the baseline.

Fig. 4: Resource utilization improvement of the GA over
baseline.

In the following, we compare the GA with heuristic and
structure with the baseline in terms of acceptance rate. Fig. 3
indicates that both methods converge to a steady state, as the
outcome of expiring requests. Nevertheless, the GA achieves
a notably higher acceptance rate, due to its ability to adapt to
the current condition of its environment. This observation is
also substantiated by the fact that when there is no random
traffic in the network and low utilization from the embedded
requests, neither of the algorithms leads to rejections.

To gain more insights, we also compare the two methods in
terms of resource utilization. To this end, we specifically com-
pare the embeddings generated by the baseline and fed into
the population of the GA with the final embedding computed
by the GA. For the comparison of the generated mappings, we
use their fitness as a metric for resource utilization. According
to Fig. 4, the GA yields a significant improvement in terms
of resource utilization. This stems from the fact that the GA
examines a larger part of the search space compared to the
baseline. This essentially empowers the genetic procedures to
improve the embeddings generated by the baseline or identify
better alternatives.

To further explain the efficiency gains achieved by the GA,
we measure the server and link cost (i.e., in terms of CPU
cycles and bits per second, respectively). The respective gains
compared to the baseline are illustrated in Fig. 5. Additional
micro-benchmarks from our simulation environment indicate
that the edges of the VNF-graph are mapped onto shorter

Fig. 5: Server cost measured in CPU cycles (GHz) and link
cost in Gbps.

paths by the GA, which also achieves an increased VNF
consolidation level. Eventually, the shorter hop-count and the
better consolidation level lead to the link and server cost
savings, empowering the NFVI provider to better monetize
his infrastructure.

VI. CONCLUSIONS

VNF-graph mapping comprises a crucial orchestration as-
pect for NFV infrastructures. In contrast to various heuristics
and exact methods employed to tackle this problem, we in-
vestigated the efficiency of AI-assisted embedding, leveraging
on genetic algorithms. Our simulation results indicate that
our proposed genetic algorithm confronts the computational
complexity of VNF-graph embedding and generates efficient
solutions. More precisely, the genetic algorithm yields sig-
nificantly higher request acceptance rates, which stem from
improved VNF consolidation and lower bandwidth consump-
tion, compared to a baseline greedy algorithm with a similar
optimization objective (i.e., VNF consolidation).

In future work, we plan to explore the suitability of other
methods for AI-assisted NFV orchestration, such as rein-
forcement learning, and perform comparisons against existing
heuristic and exact methods. Furthermore, the applicability of
such AI methods will be also studied in the context of other
NFV orchestration aspects, such as VNF elasticity.

ACKNOWLEDGMENTS

This work is supported by the MESON (Optimized Edge
Slice Orchestration) project, co-financed by the European
Union and Greek national funds through the Operational
Program Competitiveness, Entrepreneurship and Innovation,
under the call RESEARCH - CREATE - INNOVATE (project
code: T1EDK-02947).

REFERENCES

[1] “ETSI Network Function Virtualization,” http://www.etsi.org/
technologies-clusters/technologies/nfv.

[2] M.-A. Kourtis et al., “T-nova: An open-source mano stack for nfv in-
frastructures,” IEEE Transactions on Network and Service Management,
vol. 14, no. 3, pp. 586–602, 2017.

[3] G. Papathanail, A. Pentelas, I. Fotoglou, P. Papadimitriou, K. V.Katsaros,
V. Theodorou, S. Soursos, D. Spatharakis, I. Dimolitsas, M. Avgeris,
D. Dechouniotis, and S. Papavassiliou, “Meson: Optimized cross-slice
communication for edge computing,” IEEE Communications Magazine,
vol. 58, no. 10, 2020.

[4] J. Sherry et al., “Making middleboxes someone else’s problem: network
processing as a cloud service,” ACM SIGCOMM Computer Communi-
cation Review, vol. 42, no. 4, pp. 13–24, 2012.

[5] D. Dietrich et al., “Multi-provider service chain embedding with nestor,”
IEEE Transactions on Network and Service Management, vol. 14, no. 1,
pp. 91–105, 2017.

[6] A. Abujoda and P. Papadimitriou, “Midas: Middlebox discovery and
selection for on-path flow processing,” in IEEE COMSNETS, 2015.

[7] D. Dietrich et al., “Network function placement on virtualized cellular
cores,” in IEEE COMSNETS, 2017, pp. 259–266.

[8] A. Abujoda and P. Papadimitriou, “Distnse: Distributed network service
embedding across multiple providers,” in IEEE COMSNETS, 2016.

[9] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” Algorithmica, vol. 47,
no. 1, pp. 53–78, 2007.

[10] S. Dräxler, H. Karl, and Z. Á. Mann, “Jasper: Joint optimization of
scaling, placement, and routing of virtual network services,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, 2018.

[11] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding lc-vne algorithms towards integrated node
and link mapping,” IEEE/ACM Transactions on Networking, vol. 24,
no. 6, pp. 3648–3661, 2016.

[12] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, “On the computa-
tional complexity of the virtual network embedding problem,” Electronic
Notes in Discrete Mathematics, vol. 52, pp. 213–220, 2016.

[13] A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and
M. Trubian, “Heuristics from nature for hard combinatorial optimization
problems,” International Transactions in Operational Research, vol. 3,
no. 1, pp. 1–21, 1996.

[14] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

[15] C. Papagianni et al., “Rethinking service chain embedding for cellular
network slicing,” in IFIP Networking, 2018, pp. 1–9.

[16] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying nfv and sdn to lte mobile core gateways, the functions
placement problem,” in Proceedings of the 4th workshop on All things
cellular, 2014, pp. 33–38.

[17] A. Pentelas, G. Papathanail, I. Fotoglou, and P. Papadimitriou, “Network
service embedding across multiple resource dimensions,” IEEE Trans-
actions on Network and Service Management, vol. 18, no. 1, 2021.

[18] C. Renzi, F. Leali, M. Cavazzuti, and A. O. Andrisano, “A review on
artificial intelligence applications to the optimal design of dedicated
and reconfigurable manufacturing systems,” The International Journal
of Advanced Manufacturing Technology, vol. 72, no. 1-4, 2014.

[19] H. Guo and W. H. Hsu, “A machine learning approach to algorithm
selection for NP-hard optimization problems: a case study on the mpe
problem,” Annals of Operations Research, vol. 156, no. 1, 2007.

[20] A. Diveev and O. Bobr, “Variational genetic algorithm for np-hard
scheduling problem solution,” Procedia Computer Science, vol. 103,
2017.

[21] P. V. Paul, N. Moganarangan, S. S. Kumar, R. Raju, T. Vengattaraman,
and P. Dhavachelvan, “Performance analyses over population seeding
techniques of the permutation-coded genetic algorithm: An empirical
study based on traveling salesman problems,” Applied soft computing,
vol. 32, pp. 383–402, 2015.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to algorithms second edition,” The Knuth-Morris-Pratt Algorithm, 2001.

[23] “Edge Vector libraries,” https://rodispantelis.github.io/EdgeVector/.
[24] “DIMACS graph set,” http://archive.dimacs.rutgers.edu/pub/challenge/

graph/benchmarks/clique/.
[25] S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A. Mustapha, and

K. Y. Leong, “Crossover and mutation operators of genetic algorithms,”
International journal of machine learning and computing, vol. 7, no. 1,
pp. 9–12, 2017.

