
Received 21 June 2023, accepted 14 August 2023, date of publication 24 August 2023, date of current version 30 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3308492

Unsupervised Deep Learning for Distributed
Service Function Chain Embedding
PANTELEIMON RODIS AND PANAGIOTIS PAPADIMITRIOU , (Senior Member, IEEE)
Department of Applied Informatics, University of Macedonia, 546 36 Thessaloniki, Greece

Corresponding author: Panteleimon Rodis (rodis@uom.edu.gr)

This research was funded by the European Union’s Horizon Europe research and innovation program under grant agreement
No. 101070487 (NEPHELE). The publication of the article in OA mode was financially supported by Hellenic Academic Libraries
Link (HEAL-Link).

ABSTRACT Network Function Virtualization (NFV) has paved the way for themigration of Virtual Network
Functions (VNFs) into multi-tenant datacenters, lowering the barrier for the introduction of new processing
functionality into the network. Recent trends for resource orchestration across the entire compute continuum
raise the need for decision making at low timescales, a requirement which can be hardly met by centralized
resource optimizers that rely either on Linear Programming or Machine Learning (ML). In this respect,
we present a distributed approach tailored to a crucial resource orchestration aspect, i.e., the embedding of
Service Function Chains (SFCs) onto large-scale virtualized network infrastructures. In order to confront the
computational hardness of the SFC embedding problem, we utilize a clustering method for the partitioning
of the solution space, empowering the search for efficient solutions in parallel across all clusters. Another
salient feature of our approach is the use of unsupervised deep learning for the computation of embeddings
within each cluster. Our distributed SFC embedding framework is benchmarked against a state-of-the-art
heuristic and a distributed greedy algorithm. Our evaluation results uncover notable gains in terms of resource
efficiency, combined with solver runtimes in the order of milliseconds with thousands of substrate nodes.

INDEX TERMS Network function virtualization, resource orchestration, deep learning, distributed
computation.

I. INTRODUCTION
Network Function Virtualization (NFV) has evolved over
the years as a major enabler for network service deploy-
ment with higher flexibility and resource efficiency [1],
[2], [3], [4], [5]. Besides traditional telco-oriented network
functions, such as security appliances, network address trans-
lation or proxies, NFV has also found traction across Radio
Access Network (RAN) infrastructures [2]. In this respect,
NFV orchestration has attracted significant attention, with
regards to aspects such as service chaining, service function
chain (SFC) embedding, as well as the scaling of running
network service instances. Although various solutions exist
for these problems [1], [2], [3], [4], [5], [6], [7], [8], han-
dling these orchestration operations at large scale still poses
significant challenges and opens up opportunities for new
approaches.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

To this end, we focus on the problem of SFC-graph
embedding, which entails the assignment of Virtualized Net-
work Functions (VNFs) and the corresponding SFC-graph
edges onto the respective NFV infrastructure counterparts
(i.e., servers and network paths). This particular problem
is known to be NP-Hard [9] and has been mainly tackled
by heuristics [6], [7], [10], [11], [12] and exact methods,
[1], [2], as well as (deep) learning-based techniques [8],
[13], [14], [15].

Despite these advancements, the massive scale of modern
core cloud infrastructures and the ever-increasing computing
and network capacities inevitably increase the complexity of
SFC embedding. Taking this complexity into consideration,
exact methods turn out to be inefficient due to the prohibitive
solver runtime, heuristics commonly yield notable subopti-
mality and may fall short of computing embeddings at the
timescales required by network operators, whereas the train-
ing stage of (deep) learning-based methods also introduces
significant scalability limitations.

91660 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9169-8202
https://orcid.org/0000-0001-5005-8866
https://orcid.org/0000-0002-3202-1127

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

In order to address SFC embedding at large scale and
confront its computational hardness, we employ a distributed
embedding computation approach. Fully decentralized solu-
tions enable adaptability to different problem configurations
and scalability variations of the substrate network. Relying
on substrate nodes for the computation of the mapping
(instead of a centralized embedder) empowers us to detect
unreachable nodes or nodes/links with saturated capacity,
thereby eliminating them from candidates for hosting VNFs.
Such a distributed approach facilitates the parallel embedding
computation across the whole range of the substrate network.
This yields a significant advantage over centralized solutions,
since the solver runtime can be less dependable on the sub-
strate network size.

Our distributed SFC embedding framework couples node
clustering with deep learning. To decentralize the embedding
computation, we utilize agents deployed within each server
and a controller which is responsible for the agent coordi-
nation. The main role of these agents is to create clusters
for the partitioning of the solution space and the parallel
computation of efficient SFC mappings. Embeddings are
computed within each cluster using unsupervised deep learn-
ing. To this end, we utilize deep neural network (NN) models,
trained using genetic algorithms. We perform a comparison
against (i) a state-of-the-art centralized embedding method
(i.e., BACON [3]) in order to quantify any potential gains
of distributed embedding computation, and (ii) a distributed
greedy algorithm to gain insights into the benefits stemming
from deep learning. For these evaluations, we conduct simu-
lations on fat-tree network topologies of two sizes and up to
2662 nodes.

The paper is organized as follows. In Section II, we lay
out aMixed Linear Integer Programming (MILP) formulation
of the SFC embedding (SFC-E) problem. In Section III,
we argue for the advantages of deep learning in compar-
ison with heuristic and greedy algorithms for the solution
of NP-Hard problems, such as SFC-E. Section IV presents
an overview of our distributed SFC embedding framework.
Section V introduces our node clustering method, followed
by the description of the distributed unsupervised deep learn-
ing method in Section VI. In Section VII, we discuss the com-
putational complexity of our solution. Section VIII presents
our evaluation results. Section IX provides an overview of
related work. Finally, Section X highlights our conclusions.

II. SFC EMBEDDING FORMULATION
We hereby present a formulation for the SFC-E problem.
Let graph Gs(Vs,Es) model the substrate network, where
rz denotes the residual computing capacity of substrate node
z ∈ Vs, and bp expresses the available bandwidth of sub-
strate path p in Gs. Furthermore, Gv(Vv,Ev) models the SFC
request, where dn, de denote the CPU demand of virtual node
n ∈ Vv and the bandwidth demand of virtual edge e ∈ Ev,
respectively. By xn,z, we express whether virtual node n is
mapped onto the substrate node z (i.e., xn,z = 1 implies an
assignment), whereas f (e, p) indicates the amount of traffic

TABLE 1. Notation table.

flow (i.e., bandwidth) of virtual edge e that is assigned to the
substrate network path p.

The SFC-E problem is formulated as an (embedding) cost
minimization problem, i.e., a SFC mapping is sought that
minimizes the CPU and bandwidth consumption in the sub-
strate network. Thereby, the SFC-E problem is formulated as:

minimize
∑
n∈Vv

∑
z∈Vs

xn,zdn + a
∑
e∈Ev

∑
p∈Es

f (e, p)

where a is a normalization weight that acts as a balancing
factor between the CPU and bandwidth cost.

The embedding cost minimization is subject to a set of
capacity and variable domain constraints:∑

z∈Vs

xn,z = 1 ∀n ∈ Vv (1)

∑
k,m∈Vv

f (ek,m, pu,z) ≤ bp ∀u, z ∈ Vs, ∀p ∈ Es (2)

∑
f (ek,m, pu,z) −

∑
f (ek,m, pz,u) = de(xk,u − xm,z)

k ̸= m, ∀k,m ∈ Vv, u ̸= z, ∀u, z ∈ Vs, ∀e ∈ Ev (3)∑
n∈Vv

xn,zdn ≤ rz ∀z ∈ Vs (4)

xn,z ∈ {0, 1} ∀n ∈ Vv, ∀z ∈ Vs (5)

f (ek,m, pu,z) ≥ 0 ∀k,m ∈ Vv, ∀u, z ∈ Vs (6)

Constraint (1) ensures that each VNF is assigned exactly
to one substrate node. Constraint (2) enforces a capacity
limit on substrate links. Constraint (3) implies flow conser-
vation, i.e., the summation of incoming and outgoing flows
of a substrate node must be zero. Condition (4) ensures
that the CPU demands of the assigned VNFs do not exceed
the residual CPU capacity of the corresponding substrate
nodes. Lastly, constraint (5) enforces the binary domain con-
straints for variable xn,z, whereas condition (6) enforces the
causality of the flows f (e, p). Table (1) provides a list of all
notations.

VOLUME 11, 2023 91661

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

III. DEEP LEARNING VS. HEURISTICS
SFC orchestration aspects are often tackled using heuristic
and greedy algorithms, whereas lately AI is also in the spot-
light for this class of problems. Hereby, we reason in favor of
the use of deep learning for solving NP-Hard problems, such
as SFC-E, over heuristic and greedy algorithms and justify
our choice of moving towards this direction in our work.
In this respect, we refer to the classical modeling of heuristic
search as state space search, provide a similar modeling for
the greedy algorithms, and subsequently examine the poten-
tial of using eachmethod for the computation of problem state
space.
State space (or solution space) S consists of all the possible

solutions of a problem; or else all the possible configu-
rations of the problem. An algorithm is modeled as state
space search, if it gradually computes the whole or a part
of S so as to find a goal state that comprises an acceptable
solution for the problem under study. As an example, let
us refer to SFC-E. The state space of each instance of the
problem consists of all the possible mappings of the incoming
SFC-graph to the given substrate network. Every algorithm
that solves it, computes an element of S that represents a
(near-)optimal mapping of the SFC-graph onto the substrate
network.
Heuristic search is modeled as graph G(V ,E), where

nodes in V model the states of S and edges in E model
the possible actions that can be applied to the states [16].
A heuristic search algorithm is a sequence of actions that
generates a state trajectory leading from an initial state to a
goal state. This procedure generates a path in G that connects
the initial and the goal state [17].
Greedy algorithms perform locally optimal choices in each

step of their function aiming at reaching globally optimal
solutions. Let us formulate this as a state space search and
apply it to the SFC-E in order to gain intuition on this
formulation.

Initially, all the states in S are possible solutions of the
problem at hand. Greedy algorithm A in step n performs a
locally optimal choice that promotes the states in Sn ⊆ S as
possible solutions of the problem; in step n+ 1 promotes the
states of Sn+1 ⊆ Sn as possible solutions, and so on, until
a goal state has been reached. In each step n, algorithm A
applies function f (Sn) → Sn+1, until in step q the algorithm
has formed Sn+q ⊆ T , where T is the set of goal states in S.
This formulation is highly relevant to greedy algorithms

for the SFC-E problem. The most common pattern that these
algorithms follow is that based on some criteria, they sequen-
tially map the VNFs of an incoming request to the substrate
network. When a greedy algorithm maps VNF a onto sub-
strate node z, the states in S that include this mapping are
promoted as solutions of the problem, while the states that
map a onto any other node are rejected. This procedure grad-
ually generates the mapping that the greedy algorithm will
produce, while rejecting subsets of S as possible solutions.
This is the case for the greedy algorithm that we present in
Section VIII-B, where the VNFs are sequentially mapped

to the cluster nodes reducing the possible mappings in
each step.

The state space of NP-Hard problems grows exponentially,
so assuming that NP ̸= P holds, there is no efficient method
that can compute the whole state space efficiently (that would
incur polynomial time). This implies that every efficient
algorithm computes only a subset of S of polynomial size,
aspiring to identify a near-optimal solution. As such, in order
to compute the whole S using heuristics, an exponential
number of state trajectories is required. This implies using
an exponential number of efficient heuristics. On a similar
fashion, computing S using greedy algorithms requires an
exponential number of steps, or an exponential number of
efficient greedy algorithms.

It is widely accepted that deep neural networks approxi-
mate efficiently linear and non-linear functions and express
probability distributions [18], [19]. There are families of
functions that can be efficiently approximated by a single
model [20]. It is reasonable to assume then that we can
develop deep neural network models of appropriate archi-
tecture and training that achieve an effective level of gen-
eralization so as to include the functionality of families of
heuristics and greedy algorithms. Along these lines, the use
of deep learning outperforms other solutions. Based on this
observation, we leverage on deep learning for tackling the
problem of SFC embedding.

The complexity of the heuristics is determined by the
length of the state trajectories, while for greedy algorithms
the number of steps determines their asymptotic behavior.
The efficiency of the learning models is determined by the
training procedure which needs to be competitive against
other solutions.

IV. SFC EMBEDDING FRAMEWORK OVERVIEW
Our SFC embedding approach relies on a multi-agent frame-
work that consists of:

• Agents hosted in each substrate node, where each agent
computes a candidate mapping for every request using
unsupervised learning.

• A controller that coordinates the distributed agents and
selects the most efficient mapping computed by the
agents.

An indicative example is illustrated in Fig. 1. Upon the
arrival of a SFC request, each agent forms a cluster of nodes
that are capable of hosting the SFC and are also proximate to
the agent’s hosting node. Subsequently, each agent computes
a mapping of the SFC on the nodes of its cluster. Eventually,
the controller returns the most efficient mapping generated
by the agents or alternatively declares a rejection, in case a
feasible mapping has not been identified.

Initially, the controller generates a sorted list of all the
paths among the substrate nodes in ascending order based on
their length. Upon the arrival of a new request, the controller
traverses the sorted list from the beginning, and if a path and
the nodes it connects meet the SFC request demands, the
nodes are used for the formation of clusters by the agents.

91662 VOLUME 11, 2023

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

FIGURE 1. Example of the distributed SFC embedding framework in a
two-layer fat-tree substrate network, with four racks and one agent
within each server. The controller interacts with the agents coordinating
the SFC embedding on the servers.

The maximum size of a cluster is bounded in order to main-
tain a low complexity for the algorithm.

Subsequently, a candidate mapping is computed by every
agent using unsupervised deep learning. If a trained model
suitable for the computation of the mapping is identified by
the controller, the agents utilize it for the mapping output.
In case there is no valid mapping, the agents train deep NN
models in order to generate validmappings. TheNN is trained
by a genetic algorithm, which comprises a salient feature of
our framework, given that genetic algorithms are commonly
utilized for the training of supervised learning models. The
newly trained models that generate efficient solutions are
stored in the controller for future use by the agents. In case
valid mappings are computed at any stage of the procedure,
the controller returns the mapping with the best fitness as the
algorithm output.

The source code of a Java implementation of the algorithms
and our simulation environment are available at [21]. In the
following, we elaborate further on the clustering procedure
(Section V) and the unsupervised deep learning method for
the placement of VNFs (Section VI).

V. NODE CLUSTERING
Clustering is carried out in dynamic fashion, favoring adapt-
ability in the variations of CPU and network load on the
infrastructure. Initially, the substrate paths that connect the
nodes (e.g., servers) are ranked in ascending order based
on their hop count. This procedure takes place only once
at the beginning, whereas the next steps are executed at the

arrival of each request. Starting from the top of the sorted
list, if the residual bandwidth of each path and the residual
capacities of the nodes along this path meet the demands of
the SFC-graph, these nodes are used for the formation of the
clusters. For instance, for a substrate path pu,z that meets the
request demands, node u is inserted into the cluster of agent #z
and node z is inserted into the cluster of agent #u.

Each cluster has a predetermined maximum size equal
to four times the size of the SFC-graph. The effective-
ness of this adjustment has been determined experimentally.
More specifically, forming clusters of smaller size reduces
the efficiency of the generated mappings, while clusters of
larger size increase the complexity of the algorithm without
improvements on its efficiency. Each cluster is formed by
the candidate nodes (for hosting VNFs), which are more
proximate to the agent.

We apply four sets of demands in order to determine if
path p and its connected nodes u, z meet the demands of the
SFC-graph:
demands #1:
ru ≤ max(dn) ∧ rz ≤ max(dn) ∧ bp ≥ min(de)
demands #2:
ru ≥ min(dn) ∧ rz ≥ min(dn) ∧ bp ≥ min(de)
demands #3:
ru ≤ max(dn) ∧ rz ≤ max(dn) ∧ bp ≥ max(de)
demands #4:
ru > min(dn) ∧ rz > min(dn) ∧ bp ≥ max(de)
where max(dn) and min(dn) denote the maximum and mini-
mum CPU demands, respectively, whilemax(de) andmin(de)
express the maximum and the minimum bandwidth demands
in the SFC graph. The use of only four sets of demands retains
low complexity on the algorithm, which is corroborated by
our evaluation results.

In the case where demands #1 fails to form clusters that
generate valid mappings, the cluster formation procedure and
the mapping computations are repeated using the demands #2
and so forth. Each set of demands is used for the computa-
tion of mappings that minimize the residual capacity of the
substrate nodes. In case of failure, the next set of demands
relaxes the clustering formation criteria in order to generate
an efficient mapping, inline with the previous objective. After
the formation of the clusters, the cluster nodes meet the
bandwidth demands of the request. Subsequently, the agents
identify the most efficient placement of the VNFs onto the
cluster nodes.

At the end of this procedure, each mapping generated by
the agents is conveyed to the controller and the one with the
best fitness eventually becomes the output of the algorithm.
In case more than one agents have computed mappings with
the same fitness, then the mapping of the first agent in the list
is chosen. If the agents have not generated any valid mapping
after all sets of demands, the request is rejected. These proce-
dures are described in Algorithm 1. A simple example of the
clustering procedure and the produced mapping is illustrated
in Fig. 2.

VOLUME 11, 2023 91663

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

FIGURE 2. Clustering example, where each cluster consists of 3 nodes,
equal to the size of the SFC-graph. Agents #2, #3 and #4 do not form
clusters due to the saturation in the capacity of server 4 and the links in
servers 2 and 3. The clusters in the rest of the agents are formed by the
nodes of closer proximity with sufficient capacity. The nodes in
clusters #5 and #6 are connected with shorter paths than the nodes of
cluster #1. The SFC is then mapped to the first shortest-path cluster of the
list, i.e., agent #5.

VI. DEEP LEARNING FOR VNF PLACEMENT
A. MODEL DESCRIPTION
After the clustering procedure, the agents compute the map-
ping of the cluster nodes onto the VNFs. The clusters are
formed considering the bandwidth constraints; therefore,
at this point, the agents only take capacity demands into
account. The VNF placement is computed using an artificial
feedforward NN in every agent. This approach is based on
the concept of pattern recognition, i.e., the NN is trained to
identify within the cluster nodes the pattern that forms an
efficient mapping.

The NN receives as input the cluster of nodes and the
VNF demands, and subsequently generates the mapping.
Our proposed solution satisfies the demand for efficient and
low-complexity computation of the mapping in the agents.
Unlike other solutions, for every problem configuration our
NN is trained effectively with only one input. The leads to a
satisfactory degree of generalization, obviating the need for a
training dataset of many labeled examples (as in most cases of
supervised learning) or the need to explore many states of the
state space of the problem (as in most cases of reinforcement
learning).

As illustrated in Fig. 3, the NN encompasses two hidden
layers. The activation function for all nodes except the output
layer is the bipolar sigmoid function:

f (x) = (1 − exp(x))/(1 + exp(x))

whereas the activation function of the output layer is the linear
function f (x) = x. The output xi of output layer node i is

Algorithm 1 Controller Node
Input: graphs Gs(Vs,Es), SFC-graph, path list, cluster size
Output: mapping
1: run initialization()

{on new SFC-graph input}
2: run clustering(demands 1)

{after agents compute candidate mappings}
3: run output()
4: Procedure initialization()
5: for u = 0 to substrate nodes do
6: for z = 0 to substrate nodes do
7: store hop count of path pu,z in path list
8: end for
9: end for
10: bucket sort path list in ascending order of hop counts
11: Procedure clustering(demands)
12: for z = 0 to substrate nodes do
13: delete stored data from agent #z
14: send SFC capacity demands
15: add node z to cluster of agent #z
16: end for
17: clustersize = 4×SFC-graph size
18: for p = 0 to path list do
19: if path pu,z meets demands then
20: if size of cluster in agent #z < cluster size then
21: add u to cluster of agent #z
22: end if
23: if size of cluster in agent #u < cluster size then
24: add z to cluster of agent #u
25: end if
26: end if
27: end for

{compute VNF-placement}
28: for j = 0 to substrate nodes do
29: compute mapping in agent #j
30: end for
31: Procedure output()
32: if mappings are produced then
33: m = mapping of agent #0
34: for j = 1 to substrate nodes do
35: ifmapping of agent #j has better fitness thanm then
36: m = mapping of agent #j
37: end if
38: end for
39: return m
40: else if demands #d < 4 were used then
41: run clustering(demands #d + 1)
42: else
43: return rejection
44: end if

further filtered producing the final output x ′
i , where x

′
i is the

integer part of xi. Bias is constant and set equal to 10 for all
nodes.

91664 VOLUME 11, 2023

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

FIGURE 3. The deep neural network model.

In order to reduce the complexity of the training procedure,
the training algorithm assigns only integer values from the
range [-10, 10] onto the NN links. As such, the possible
configurations of the NN are limited to a finite and easily
computable set.

The application of integer values in NN weights is
an effective strategy which leads to low-complexity solu-
tions [22]. It can be combined with training methods based
on evolutionary strategies and produce effective solutions
for computationally-hard problems [23]. Furthermore, using
integer values in a limited range generates very cost-effective
implementations of NN that satisfy the demands of our
system [24]. In any case, the choice of the range of values
and the appropriate architecture of the NN depends on the
problem at hand and, in many cases, deviates significantly
among problems of different complexity.

In our simulation environment (Section VIII-A), the input
layer of the NN receives the residual capacities of the first
11 nodes of the cluster and the demands of the VNFs (which
are at most 9 in our simulations). Each of the two hidden lay-
ers consists of 6 nodes, whereas the output layer encompasses
9 nodes which indicate the mapping of the cluster nodes to the
VNFs. These choices stem from empirical evidence, based
on which, decreasing the number of nodes or hidden layers
generates undertrained models, while increasing the number
of nodes or layers leads to overtrained models.

Any input or output node that is not applicable is assigned
with a negative value. The NN finally produces a vector m
in the form: m = ⟨n1, n2, n3, n4, n5, n6, n7, n8, n9⟩, where
ni is the cluster node mapped onto VNF i or a negative
value. The mapping generated by the algorithm is formed
by replacing in m the cluster nodes with the corresponding
substrate node IDs.

B. TRAINING USING GENETIC ALGORITHMS
For the NN training, we rely on a genetic algorithm (GA).
Although the use of GAs for NN training is known to exhibit
certain advantages that include efficiency and reliability [23],
[25], [26], [27], yet GAs are mainly applied to supervised

learning as an alternative to the Back Propagation technique.
To the best of our knowledge, there are no studies that
employ GAs for training unsupervised learning models as we
do. As such, we consider this an innovative feature of our
proposed solution.

The nature of NN training is rather complex and usually
exhibits very complex error surfaces where traditional tech-
niques, such as Back Propagation, often converge in local
optima [28]. The GAs presented in the aforementioned works
deviate from the simple GA design providing sophisticated
training methods that avoid the premature convergence in
local optima. Our solution is designed in the same spirit.

Our training algorithm is based on the Parameter
Adjustment GA in [8] and is described in Algorithm 2. Its
operation is oriented towards the optimization of the opera-
tion of other applications, which, in our case is the NN. This
GA enriches the design of the simple GA by running multiple
instances of the simple GA and then combining the generated
results. This operation is facilitated by the supergenerations
parameter, which determines the number of GA instances that
will run in the first stage of the algorithm on randomly gener-
ated populations. The models that they return will constitute
the populations for another round of GA instances at stage 2.
Subsequently, at stage 3, the final solution will be computed
by one last GA instance that will run on the population of
models produced at stage 2. The generated models during
these stages approach local optima, but the final solution
manages to avoid convergence in any of them and approaches
the global optimum.

The setup of the GA consists of a population of 20 chromo-
somes, 40 generations, and 4 supergenerations. Furthermore,
the crossover probability is set to 1.0, whereas the mutation
probability is adjusted to 0.5. The GA is efficient and con-
verges fast to an near-optimal model.

The chromosomes of the GA consist of the weights of the
links that connect the NN nodes. The GA produces optimized
weights for the links that enable the NN to generate the
desired mapping. The objective of the trained NN is the
computation of a mapping that minimizes the residual server
capacities. In order to compute the fitness of each chromo-
some of the GA population, we run the network model to be
encoded and we feed it with the SFC-graph. The generated
mapping is evaluated based on the following fitness function:

minimize
∑

z∈Vs,n∈Vv

(rz − dn) (7)

for any substrate node z mapped to virtual node n, as defined
by the mapping computed by the NN.

Fig. 4 illustrates how the models produced by the GA in the
various stages of its operation gradually converge in a model
of minimum fitness, as fitness is described by equation (7).
The plot describes the training that takes place in one agent
that produces the solution, which is finally used for the
embedding of an incoming request of 9 VNFs in the 12-pod
network utilized in our simulations (Section VIII). This
exhibits how the best solution (the most efficient model) is

VOLUME 11, 2023 91665

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

FIGURE 4. The fitness of the most efficient model that is produced during
the training operation gradually converges to a global minimum.

improved during the generations of the various GA instances
that run.

If a produced model successfully generates a valid map-
ping, it is stored in a common database where the agents
search for appropriate models on any future request. In our
simulations, the search criterion is the size of the SFC-graph.
Upon a new request, each agent runs the models found in the
database until a valid mapping is computed. In case that no
model that generates a valid mapping has been found by any
of the agents, the training procedure is initiated.

The GA that trains the models uses the current request as
input in order to compute the fitness. As such, a model does
not generalize on any given input; it is thereby necessary to
train new models, as requests of different parameters arrive
and network conditions change (these are the factors that
define each problem configuration). The flow chart in Fig. 5
describes the procedures that the controller executes. This
includes searching for a model and initiating the training
procedure, in case no model has been found by the agents.

VII. COMPLEXITY ANALYSIS
In this section, we discuss the complexity of our proposed
solution, as well as the communication overhead due to the
clustering. Let S = nq be the solution space of the SFC-E
problem. In essence, this corresponds to the number of per-
mutations with repetition of q over a set of n elements, where
q = |Vv| and n = |Vs|. The proposed algorithm reduces the
computation of this large solution space to a small subset of S.

The size of the cluster l that every agent computes is at
most equal to 4 × q. An agent computes a mapping over a
solution space Sl ≤ (4 × q)q. Cumulatively all the agents
examine a space of Sr ≤ n× (4×q)q solutions, which is sub-
stantially smaller than S. The clustering procedure excludes
(from computation) infeasible solutions that do not meet
bandwidth constraints, as well as inefficient mappings where
the hop-count among the communicating VNFs is large.

The Algorithm 1 in controller node yields a complexity
O(n2 + q). For the computational complexity of the learning
algorithm, we take into consideration the operation of the NN

Algorithm 2 Training Genetic Algorithm
Input: neural network model, population size, generations,

supergenerations
Output: weight assignment on neurons (best chromosome)
1: run init1()
2: Procedure init1()
3: for t = 0 to supergenerations do
4: for s = 0 to supergenerations do

{stage 1}
5: generate population1
6: run init2(population1)
7: store best chromosome in population2
8: end for

{stage 2}
9: run init2(population2)

10: store best chromosome in population3
11: end for

{stage 3}
12: run init2(population3)
13: return best chromosome
14: Procedure init2(population)
15: compute deviation in population
16: if deviation > 0 then
17: for i = 0 to generations do
18: run crossover, mutation, selection
19: end for
20: end if
21: return best chromosome

FIGURE 5. The flow of procedures that the controller executes. It requests
the agents to search the model database and, in case no valid model has
been found, they are requested to train a new model. These procedures
either produce a valid mapping or designate a rejection in the case of
failure.

that affects the execution and training of the model. Most
implementations of artificial NNs exhibit quadratic complex-
ity, as they are mainly based on matrix multiplication [29].

91666 VOLUME 11, 2023

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

In our NN implementation, we employ an object-oriented
approach in order to reduce complexity. Every NN node
corresponds to a Java object that includes information about
connections with other nodes and the adjacent links, which
are also objects. Running the NN consists in merely passing
the weight values through all its nodes and, as such, the
complexity is linear to the NN size which is constant. As a
result, the complexity of the proposed solution is polynomial
and the computational burden imposed to the nodes is low.

During clustering, the messages exchanged represent at
most q numerical values. The controller sends n×qmessages
to the agents (each message contains one substrate node dur-
ing the cluster formation) and receives at most one message
from each agent containing a set of n nodes or less and the
fitness of the mapping. As such, the clustering procedure
yields an insignificant communication overhead. NN models
that are exchanged between the agents and the controller are
represented by arrays of size equal to the number of edges of
the NN (in our case, 210 numerical values). Therefore, in this
case, the communication overhead remains low as well.

VIII. EVALUATION
In this section, we discuss our evaluation results. Initially,
we present our evaluation environment (Section VIII-A)
and then we elaborate on our comparison methods
(Section VIII-B). The efficiency of our DL-based SFC
embedding framework is assessed in Section VIII-C.

A. EVALUATION ENVIRONMENT
For our evaluations, we have implemented a simulation
environment for SFC embedding onto 3-layer fat-tree data-
center (DC) network topologies, which comprise a represen-
tative NFV Point-of-Presence (PoP) [30].

1) NFV INFRASTRUCTURE
The simulations are conducted on a medium and a large-scale
DC network. The former consists of 12 pods, containing
72 racks and 432 servers in total. The large-scale DC consists
of 22 pods, 242 racks and 2662 server in total. The capacity
of each server is 20 GHz, i.e., 8 CPU cores at 2.5 GHz. The
bandwidth of the links that connect the servers with their Top-
of-the-Rack (ToR) switch is set to 1 Gbps. The links at the
upper layers of theDC network are configuredwith a capacity
of 10 Gbps.

2) SFC REQUESTS
Each SFC-graph request consists of a diverse number of
VNFs, picked randomly within the range of 5 to 9. The
computing demand for each VNF in the request varies
between 2 and 6 GHz. The rest of the simulation parameters
(related to the SFC requests) vary between the medium-scale
and the large-scale topology. For the former, the bandwidth
demands in the SFC-graph vary between 20 and 100 Mbps
and, in each simulation, we generate and compute mappings
for 6000 requests. In the large-scale topology, bandwidth
demands range between 40 and 200 Mbps, while mappings

are computed for 14000 requests. For each embedded SFC,
a lifetime is picked randomly in the range [0, t], where t cor-
responds to the number of requests that have to be processed
before the SFC expires. In particular, we set t = 1620 and
t = 10000 for the medium and large-scale topology,
respectively,

The algorithms and the DC network simulator are imple-
mented in Java 8. All distributed computing algorithms,
in particular, are implemented with multiple threads in order
to enable the parallel operation of the agents. The source
code and compiled binaries of the simulator and algorithms
are available in [21]. Our simulations are carried out on
a workstation equipped with a 16-core Intel Xeon CPU at
2.1 GHz and 8 GB RAM.

B. COMPARISON METHODS
We compare our proposed solution against a state-of-the-art
heuristic (i.e., BACON) and a greedy algorithm.

1) BACON
BACON [3] is a centralized approach that shares common
objectives with our method. More specifically, BACON is
based on the criticality ranking of the VNFs, which is defined
as proportional to the interconnections that it has with other
VNFs of the SFC, i.e., the degree of the corresponding node
in the SFC-graph. We further consider the latency between
any two communicating VNFs k,m mapped respectively to
substrate nodes u, z in proportion to the length of the physical
path pu,z. BACON applies a server ranking criterion, namely
Betweeness Centrality (BC), for choosing the most efficient
substrate node for hosting eachVNF. In structured topologies,
such as fat-trees, the substrate nodes exhibit homogeneous
properties, which results in the same ranking for substrate
nodes. In order to alleviate this, in each iteration BACON
considers only the servers that have sufficient capacity to
host the VNF with the minimum demand. BACON ranks the
servers in descending order based on BC, and, in every step,
it searches for the server with the highest BC that generates
an efficient mapping.

2) DISTRIBUTED GREEDY
Furthermore, our deep learning method is compared against
a greedy algorithm (Algorithm 3), running on the distributed
agents, that accepts the same input as our learningmethod and
solves the VNF placement problem. The greedy algorithm
sorts the cluster nodes in ascending order based on their
residual capacity and then strives to place as many VNFs as
possible onto the sorted nodes, starting from the beginning of
the list. In essence, the greedy exercises VNF consolidation.
However, it does not conduct an exhaustive search of the
possiblemappings and does not guarantee an optimal solution
for each case.

C. EVALUATION RESULTS
We hereby present our evaluation results, comparing our
Distributed Deep Learning method (DistrDL) against

VOLUME 11, 2023 91667

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

Algorithm 3 Distributed Greedy Algorithm (DistrGr)
Input: cluster, SFC-graph
Output: mapping, fitness
1: sort cluster nodes in ascending order based on residual

capacities
2: for i = 0 to cluster nodes do
3: while i is not mapped do
4: initialize variables k,m
5: for v = 0 to SFC-graph nodes do
6: if m > ri − dv then
7: m = ri − dv
8: k = v
9: end if

10: end for
11: if a is null then
12: return rejection
13: else
14: map i to k
15: add m to fitness
16: end if
17: end while
18: end for
19: if not rejected then
20: return mapping, fitness
21: end if

BACON and the distributed greedy algorithm (DistrGr).
Since BACON exhibits high solver runtime, we utilize it only
in our simulations on the medium-scale DC network.

We initially assess the SFC embedding efficiency in
terms of SFC request acceptance ratio. According to Fig. 6,
DistrDL exhibits a small gain in comparison with the two
other methods. Next, we measure the amount of traffic
generated in the network at the inter-rack and intra-rack
level. In terms of inter-rack traffic, DistrDL outperforms
both BACON and DistrGR, conserving the largest amount
of bandwidth at the upper layers of the fat-tree (Fig. 7).
This essentially stems from our clustering approach, which
inhibits the partitioning of SFCs among multiple racks. More
significant gains are observed for DistrDL with respect to
intra-rack traffic, as illustrated in Fig. 8. The reason behind
this bandwidth saving within each rack is the higher degree of
VNF consolidation achieved by DistrDL. Although BACON
strives to place interacting VNFs on the same rack based on
the BC criterion, in fact it does not necessarily co-locate them
on the same server, thereby generating more intra-rack traffic
than DistrDL.

We also employ the Cost-to-Revenue Ratio (CRR) in order
to quantify the efficiency of the SFC embeddings, inline
with [11]. To this end, we define the Revenue (R) of a SFC
request:

R =

∑
n∈Nv

dn + a
∑
e∈Ev

de

FIGURE 6. Request acceptance ratio on the medium-scale topology.

FIGURE 7. Inter-rack traffic generated by the embedded SFCs on the
medium-scale topology.

FIGURE 8. Intra-rack traffic generated by embedded SFCs on the
medium-scale topology.

In essence, revenue accumulates all the node and link capacity
demands of the SFC request. Furthermore, we define the
Embedding Cost (C) that essentially accumulates all node and
link embedding costs, as follows:

C =

∑
n∈Nv

dn + a
∑
e∈Ev

dele,p

where a = 0.5 and substrate path p is assigned to virtual
link e. Based on the definitions above, CRR is computed as:
CRR = C / R. Note that the lower the CRR the better.
Practically, CRR is mainly affected by the second term of C,
i.e., paths with longer hop-count increase the embedding cost,
and, thereby, the CRR. Note that in case of SFCs mapped on
the same server, CRR < 1 as le,p = 0. Hence, high CRR

91668 VOLUME 11, 2023

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

FIGURE 9. CDF of Cost-to-Revenue Ratio (CRR) on the medium-scale
topology.

FIGURE 10. Request acceptance ratio on the large-scale topology.

values imply a high degree of SFC partitioning among servers
and racks.

Fig. 9 depicts the CRR for all three methods. For DistrDL
more than 60% of the embedded SFCs exhibit CRR < 1,
implying that their interacting VNFs are co-located on the
same server. In contrast, a lower degree of VNF co-location is
indicated by the higher CRR values of BACON and DistrGr.

In the following, we perform a comparison among the dis-
tributed methods (i.e.,DistDL and DistrGr) on the large-scale
DC network topology. Fig. 10 illustrates that both meth-
ods converge to the same level of request acceptance ratio.
A notable margin between DistDL and DistrGr is observed
in terms of the traffic that is generated in the network after
the embedding of SFCs. Bandwidth conservation is achieved
by DistDL at both inter-rack (Fig. 11) and intra-rack traffic
(Fig. 12), with the gain being more notable in the latter due
to the increased level of VNF consolidation by DistrDL. This
is also corroborated by the CRR values, as shown in Fig. 13.
Both CRR plots (Figs. 9 and 13) indicate an adaptability of
DistrDL on networks of different scales.

Last, we compare the three methods in terms of solver
runtime. According to Table 2, BACON yields a runtime of
approximately 14 sec in the medium-scale topology, while its
runtime explodes in the large-scale DC (>3500 sec). As such,
we focus on the distributed methods that exhibit more com-
petitive runtimes (Table 2). Both methods can compute SFC
mappings in the order of msec for DC networks of more than

FIGURE 11. Inter-rack traffic generated by embedded SFCs on the
large-scale topology.

FIGURE 12. Intra-rack traffic generated by embedded SFCs on the
large-scale topology.

FIGURE 13. CDF of Cost-to-Revenue Ratio (CRR) on the large-scale
topology.

4000 nodes. Recall that the largest part of computation of
any of the two distributed algorithms is executed in parallel
on the substrate nodes. As such, the runtime is affected by
the clustering procedure and the time required by the agents
to generate a mapping. In DistrDL, we further consider the
delay incurred for training a model, if a suitable one is not
found. This delay is approximately 0.5 sec on average for
an agent. Note that in our simulations, additional training
was required only for 1% and 2.6% of the embedded SFCs
in the medium-scale and large-scale topology, respectively.
Consequently, this latency for training is rarely incurred, and
thereby, its impact on the DistrDL’s runtime is minimal.

VOLUME 11, 2023 91669

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

TABLE 2. Solver runtime.

IX. RELATED WORK
Our distributed multi-agent framework couples the clustering
of substrate nodes with distributed machine learning for the
mapping of SFC graphs. In the following, we discuss related
work on these topics.

A. DISTRIBUTED EMBEDDING AND NODE CLUSTERING
Numerous distributed frameworks have been proposed for
virtual network embedding and provisioning [7], [10], [12].
One drawback of these solutions is the substantial commu-
nication overhead that they introduce. In particular, these
methods establish communication among the substrate nodes,
generating a significant amount of exchanged messages. This
downside is also exhibited by methods based on the Pregel
framework [31], such as [6].

Methods of static formation of the clusters lack efficiency
and flexibility. A static clustering method is not able to
adapt to different problem configurations, as by definition it
follows a predetermined method of cluster formation, such
as graph partitioning [32], [33], [34]. For instance, solutions
that combine nodes from different clusters cannot be com-
puted. In works such as [32] and [33], additional computation
and memory consumption is required in order to examine
such solutions. Furthermore, algorithms that support static
formation consider clusters that do not meet the constraints
for embedding. These clusters can be rejected by dynamic
formation methods and, thereby, will not be considered for
the computation of embedding solutions.

The clustering procedures partition the problem in smaller
instances that are easier to solve. Then the agents and the
distributed procedures compute instances of the embedding
problem in their assigned clusters. As the problem is com-
putationally hard, this approach increases the computational
burden on each node. In our approach, each agent computes
a restricted version of the problem. The algorithm applied by
each agent yields low complexity based on unsupervised deep
learning.

B. MULTI-AGENT ARCHITECTURES
The aforementioned methods are built on distributed pro-
cedures running on the substrate nodes. An alternative and
more flexible approach is the development of multi-agent
architectures that are mainly used in reinforcement learning
methods.

Each agent explores its environment and gradually builds
an action table for treading the incoming requests. The envi-
ronment of an agent defines a part of the state space of the

problemwhere a set of possible mapping is valid. Multi-agent
architectures achieve a partitioning of the state space of the
problem. On this design, the agents will collectively produce
a near optimal solution.

The agents are not enforced to operate in certain elements
of the network. This provides flexibility enabling the devel-
opment of centralized methods [35], [36] where the agents
function on a centralised fashion; decentralised methods [37]
at which the agents are distributed across the network; hybrid
methods combining both approaches [38]. In the aforemen-
tioned studies on centralised and decentralised methods, the
functionality of the agents is synergistic. The agents share
the produced knowledge in order to achieve a more effective
exploration of their environment and reduce training time.
In other studies the agents are non-cooperative [38], [39]
and act independently competing to produce the best
solution.

Each approach has certain advantages and limitations. Our
approach relies on a distributed architecture where the agents
operate at the network nodes. They achieve an efficient state
space partitioning as each agent operates in a different clus-
ter of nodes to which a different set of possible mappings
corresponds. Although they do not implement a synergistic
schema, the effective models generated by each agent during
training are stored and remain available for future use by
all agents. As such, the agents take advantage of previously
generated knowledge, obviating the need for an entire training
procedure.

C. DISTRIBUTED MACHINE LEARNING
The main objective of distributed machine learning appli-
cations on resource allocation problems is the development
of a learning mechanism across the resources of a network,
taking advantage of the local resources and data for each
distributed procedure (e.g., agent) [40]. The most common
approach is that each agent applies some learning method,
usually artificial NN training combined with reinforcement
learning on a set of local data in order to generate a trained
model. The trained models are then shared among the agents
or combined with the models generated by the other agents,
according to the sharing policy of the system in order to
generate a global model or a set of models suitable for general
use on demand by all agents.

Currently, the use of distributed ML in NFV orchestration
comprises an emerging field of study. Distributedmethods are
used for the orchestration of SFCs [5], [15], [41], SFC elastic
management [13], SFC-graph embedding with distributed
versions of the Q-learning reinforcement algorithm [14],
and for predicting VNF autoscaling on federated learning
systems [4], [42]. However, these solutions are computation-
ally expensive and are commonly evaluated in small-scale
network topologies. As such, their efficiency at large scale
remains questionable.

Instead, our proposed solution comprises an unsupervised
NN training method of low complexity that does not stress

91670 VOLUME 11, 2023

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

the operation of the agents. As indicated by our evaluation
results, our approach yields high efficiency for large-scale
networks.

X. CONCLUSION
In this paper, we elaborated on a decentralized approach
in order to alleviate the computationally hardness of the
SFC embedding problem, especially on large-scale NFV
infrastructures. To this end, we utilized a multi-agent based
clustering method that facilitates the search for efficient
embeddings across a range of dynamically formed clusters.
For the computation of the final SFC mapping, we leverage
on unsupervised deep learning coupled with a novel training
method based on genetic algorithms.

Our evaluation results indicate that our distributed embed-
ding framework yields higher request acceptance rates and
bandwidth conservation, both at intra- and inter-rack level,
compared to BACON and a decentralized greedy algorithm.
These gains of DistrDL are not achieved at the expense of
solver runtime, which exhibits nice scalability properties in
relation to the network size.

REFERENCES

[1] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, ‘‘Multi-provider
service chain embedding with Nestor,’’ IEEE Trans. Netw. Service Man-
age., vol. 14, no. 1, pp. 91–105, Mar. 2017.

[2] C. Papagianni, P. Papadimitriou, and J. S. Baras, ‘‘Rethinking service
chain embedding for cellular network slicing,’’ in Proc. IFIP Netw. Conf.
Workshops, May 2018, pp. 1–9.

[3] H. Hawilo, M. Jammal, and A. Shami, ‘‘Network function virtualization-
aware orchestrator for service function chaining placement in the cloud,’’
IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 643–655, Mar. 2019.

[4] T. Subramanya and R. Riggio, ‘‘Centralized and federated learning for
predictive VNF autoscaling in multi-domain 5G networks and beyond,’’
IEEE Trans. Netw. Service Manage., vol. 18, no. 1, pp. 63–78, Mar. 2021.

[5] H. Chen, S. Wang, G. Li, L. Nie, X. Wang, and Z. Ning, ‘‘Distributed
orchestration of service function chains for edge intelligence in the indus-
trial Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 18, no. 9,
pp. 6244–6254, Sep. 2022.

[6] Q. Zhang, X. Wang, I. Kim, P. Palacharla, and T. Ikeuchi, ‘‘Vertex-centric
computation of service function chains in multi-domain networks,’’ in
Proc. IEEE NetSoft Conf. Workshops (NetSoft), Jun. 2016, pp. 211–218.

[7] F. Esposito, D. Di Paola, and I. Matta, ‘‘On distributed virtual network
embedding with guarantees,’’ IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 569–582, Feb. 2016.

[8] P. Rodis and P. Papadimitriou, ‘‘Intelligent network service embedding
using genetic algorithms,’’ inProc. IEEE Symp. Comput. Commun. (ISCC),
Sep. 2021, pp. 1–7.

[9] E. Amaldi, S. Coniglio, A. M. C. A. Koster, and M. Tieves, ‘‘On the
computational complexity of the virtual network embedding problem,’’
Electron. Notes Discrete Math., vol. 52, pp. 213–220, Jun. 2016.

[10] I. Houidi,W. Louati, D. Zeghlache, P. Papadimitriou, and L.Mathy, ‘‘Adap-
tive virtual network provisioning,’’ in Proc. 2nd ACM SIGCOMM Work-
shop Virtualized Infrastructure Syst. Architectures, Sep. 2010, pp. 41–48.

[11] D. Dietrich and P. Papadimitriou, ‘‘Policy-compliant virtual network
embedding,’’ in Proc. IFIP Netw. Conf., Jun. 2014, pp. 1–9.

[12] I. Houidi, W. Louati, and D. Zeghlache, ‘‘A distributed virtual net-
work mapping algorithm,’’ in Proc. IEEE Int. Conf. Commun., 2008,
pp. 5634–5640.

[13] A. Dalgkitsis, L. A. Garrido, P.-V. Mekikis, K. Ramantas, L. Alonso,
and C. Verikoukis, ‘‘SCHEMA: Service chain elastic management with
distributed reinforcement learning,’’ in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2021, pp. 1–6.

[14] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, ‘‘A deep reinforcement
learning approach for VNF forwarding graph embedding,’’ IEEE Trans.
Netw. Service Manage., vol. 16, no. 4, pp. 1318–1331, Dec. 2019.

[15] H. Huang, C. Zeng, Y. Zhao, G. Min, Y. Zhu, W. Miao, and J. Hu, ‘‘Scal-
able orchestration of service function chains in NFV-enabled networks: A
federated reinforcement learning approach,’’ IEEE J. Sel. Areas Commun.,
vol. 39, no. 8, pp. 2558–2571, Aug. 2021.

[16] B. Bonet and H. Geffner, ‘‘Planning as heuristic search,’’ Artif. Intell.,
vol. 129, nos. 1–2, pp. 5–33, Jun. 2001.

[17] I. Pohl, ‘‘Heuristic search viewed as path finding in a graph,’’ Artif. Intell.,
vol. 1, nos. 3–4, pp. 193–204, Jan. 1970.

[18] Y. Lu and J. Lu, ‘‘A universal approximation theorem of deep neural
networks for expressing probability distributions,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 33, 2020, pp. 3094–3105.

[19] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, ‘‘Learning
nonlinear operators via DeepONet based on the universal approximation
theorem of operators,’’ Nature Mach. Intell., vol. 3, no. 3, pp. 218–229,
Mar. 2021.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[21] (2023). SFC Embedding Simulator and Algorithms. [Online]. Available:
https://rodispantelis.github.io/SFC-Embedding/

[22] S. Wu, G. Li, F. Chen, and L. Shi, ‘‘Training and inference with integers
in deep neural networks,’’ in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–14.

[23] V. Plagianakos andM.Vrahatis, ‘‘Neural network trainingwith constrained
integer weights,’’ in Proc. Congr. Evol. Comput. (CEC), vol. 3, 1999,
pp. 2007–2013.

[24] S. Draghici, ‘‘On the capabilities of neural networks using limited precision
weights,’’ Neural Netw., vol. 15, no. 3, pp. 395–414, Apr. 2002.

[25] S. Ding, C. Su, and J. Yu, ‘‘An optimizing BP neural network algorithm
based on genetic algorithm,’’ Artif. Intell. Rev., vol. 36, no. 2, pp. 153–162,
Aug. 2011.

[26] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, ‘‘Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm,’’ IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 79–88, Jan. 2003.

[27] G. F. Miller, P. M. Todd, and S. U. Hegde, ‘‘Designing neural networks
using genetic algorithms,’’ in Proc. ICGA, vol. 89, 1989, pp. 379–384.

[28] J. N. D. Gupta and R. S. Sexton, ‘‘Comparing backpropagation with a
genetic algorithm for neural network training,’’ Omega, vol. 27, no. 6,
pp. 679–684, Dec. 1999.

[29] P. Orponen, ‘‘Computational complexity of neural networks: A survey,’’
Nordic J. Comput., vol. 1994, no. 1, pp. 94–110, 1994.

[30] T. Wang, Z. Su, Y. Xia, and M. Hamdi, ‘‘Rethinking the data center
networking: Architecture, network protocols, and resource sharing,’’ IEEE
Access, vol. 2, pp. 1481–1496, 2014.

[31] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, ‘‘Pregel: A system for large-scale graph processing,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 135–146.

[32] W. Lin, ‘‘Large-scale network embedding in apache spark,’’ in Proc.
27th ACM SIGKDD Conf. Knowl. Discovery Data Mining, Aug. 2021,
pp. 3271–3279.

[33] A. A. Nasiri, F. Derakhshan, and S. S. Heydari, ‘‘Distributed virtual
network embedding for software-defined networks using multiagent sys-
tems,’’ IEEE Access, vol. 9, pp. 12027–12043, 2021.

[34] A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and J. Zhang, ‘‘Dis-
tributed virtual network embedding system with historical archives and
set-based particle swarm optimization,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 51, no. 2, pp. 927–942, Feb. 2021.

[35] A. Pentelas, D. D. Vleeschauwer, C.-Y. Chang, K. D. Schepper, and
P. Papadimitriou, ‘‘Deep multi-agent reinforcement learning with minimal
cross-agent communication for SFC partitioning,’’ IEEE Access, vol. 11,
pp. 40384–40398, 2023.

[36] S. Wang, C. Yuen, W. Ni, Y. L. Guan, and T. Lv, ‘‘Multiagent deep
reinforcement learning for cost- and delay-sensitive virtual network func-
tion placement and routing,’’ IEEE Trans. Commun., vol. 70, no. 8,
pp. 5208–5224, Aug. 2022.

[37] T. Catena, V. Eramo,M. Panella, and A. Rosato, ‘‘Distributed LSTM-based
cloud resource allocation in network function virtualization architectures,’’
Comput. Netw., vol. 213, Aug. 2022, Art. no. 109111.

[38] Y. Zhu, H. Yao, T. Mai, W. He, N. Zhang, and M. Guizani, ‘‘Multiagent
reinforcement-learning-aided service function chain deployment for Inter-
net of Things,’’ IEEE Internet Things J., vol. 9, no. 17, pp. 15674–15684,
Sep. 2022.

[39] P. T. A. Quang, A. Bradai, K. D. Singh, and Y. Hadjadj-Aoul, ‘‘Multi-
domain non-cooperative VNF-FG embedding: A deep reinforcement
learning approach,’’ in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Apr. 2019, pp. 886–891.

VOLUME 11, 2023 91671

P. Rodis, P. Papadimitriou: Unsupervised Deep Learning for Distributed Service Function Chain Embedding

[40] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, ‘‘A survey on distributed machine learning,’’ ACMCom-
put. Surv., vol. 53, no. 2, pp. 1–33, 2020.

[41] P. Zhang, Y. Zhang, N. Kumar, andM.Guizani, ‘‘Dynamic SFC embedding
algorithm assisted by federated learning in space–air–ground integrated
network resource allocation scenario,’’ IEEE Internet Things J., vol. 10,
no. 11, pp. 9308–9318, Jun. 2022.

[42] R. Verma and K. M. Sivalingam, ‘‘Federated learning approach for
auto-scaling of virtual network function resource allocation in 5G-and-
beyond networks,’’ in Proc. IEEE 11th Int. Conf. Cloud Netw. (CloudNet),
Nov. 2022, pp. 242–246.

PANTELEIMON RODIS received the B.Sc.
degree in computer science and the M.Sc. degree
in engineering of pervasive computing systems
from Hellenic Open University, in 2011 and 2020,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Applied Informat-
ics, University ofMacedonia, Greece. His research
interests include the applications of artificial intel-
ligence in virtual network embedding and VNF
orchestration.

PANAGIOTIS PAPADIMITRIOU (Senior Mem-
ber, IEEE) received the B.Sc. degree in computer
science from the University of Crete, Greece,
in 2000, the M.Sc. degree in information tech-
nology from the University of Nottingham, U.K.,
in 2001, and the Ph.D. degree in electrical and
computer engineering from the Democritus Uni-
versity of Thrace, Greece, in 2008. He is currently
an Associate Professor with the Department of
Applied Informatics, University of Macedonia,

Greece. Before that, he was an Assistant Professor with the Communica-
tions Technology Institute, Leibniz Universität Hannover, Germany, and a
member of the L3S Research Center, Hanover. He has been a (co-)PI in
several EU-funded (e.g., NEPHELE, NECOS, T-NOVA, and CONFINE) and
nationally-funded projects (e.g., G-Lab VirtuRAMA and MESON). He was
a recipient of Best Paper Awards at IFIPWWIC 2012 and IFIPWWIC 2016,
and the runner-up Poster Award at ACMSIGCOMM2009. He has co-chaired
several international conferences and workshops, such as IFIP/IEEE CNSM
2022, IFIP Networking TENSOR 2020–2023, IEEE NetSoft S4SI 2020,
IEEECNSMSR+SFC 2018–2019, IFIPWWIC 2017–2016, and INFOCOM
SWFAN 2016. He is also an Associate Editor of IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT. His research interests include (next-
generation) internet architectures, network processing, programmable dat-
aplanes, time-sensitive networking (TSN), and edge computing.

91672 VOLUME 11, 2023

