
Vol.:(0123456789)

Journal of Network and Systems Management (2023) 31:81
https://doi.org/10.1007/s10922-023-09771-y

1 3

Intelligent and Resource‑Conserving Service Function
Chain (SFC) Embedding

Panteleimon Rodis1 · Panagiotis Papadimitriou1

Received: 14 December 2022 / Revised: 4 August 2023 / Accepted: 16 August 2023
© The Author(s) 2023

Abstract
Network Function Virtualization (NFV) opens us great opportunities for network
processing with higher resource efficiency and flexibility. In this respect, there is an
increasing need for intelligent orchestration mechanisms, such that NFV can exploit
its potential and live up to its promise. Genetic algorithms have emerged as a prom-
ising alternative to the proliferation of heuristic and exact methods for the Service
Function Chain (SFC) embedding problem. To this end, we design and evaluate a
genetic algorithm (GA), which computes efficient embeddings with runtimes on par
with approximate methods. We present a GA model as state-space search in order
to clarify the design choices of a GA. Our proposed GA utilizes a heuristic for the
generation of the initial population, with the aim of directing the search towards the
solution. Given the sensitivity of GAs on their various parameters, we introduce a
parameter adjustment framework for GA fine-tuning. A comparative evaluation
among a range of GA variants with diverse features sheds light on the impact of
these features on SFC embedding efficiency. The GA variant that stands out is fur-
ther benchmarked against a baseline greedy algorithm and a state-of-the-art heu-
ristic. Our evaluation results indicate that the GA yields notable gains in terms of
request acceptance and resource efficiency.

Keywords NFV · Resource orchestration · Genetic algorithms · Artificial
Intelligence

 * Panteleimon Rodis
 rodis@uom.edu.gr

 Panagiotis Papadimitriou
 papadimitriou@uom.edu.gr

1 Department of Applied Informatics, University of Macedonia, Egnatia 156, 54636 Thessaloniki,
Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-023-09771-y&domain=pdf

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 2 of 41

1 Introduction

Network Function Virtulization (NFV) decouples network functions from the
underlying specialized devices, known as middleboxes, which are commonly
deployed in enterprise and telco networks [1–3]. As such, network functions, such
as firewalls, proxies, network address translation (NAT), intrusion detection, and
redundancy elimination, can be deployed using software that runs on virtualized
commodity servers [4]. Such virtualized network functions (VNFs) can be either
executed on the network operator’s premises or can be leased from cloud provid-
ers, in the form of Network Function-as-a-Service [2, 5–8]. In this respect, NFV
enhances flexibility and resource efficiency compared to middleboxes, whereas it
also spurs innovation by lowering the barrier for introducing new functionality
into the network.

VNFs are commonly orchestrated in bundles, known as Service Function
Chains (SFCs) [5, 9]. A SFC is essentially a sequence of VNFs and is expressed
in the form of a VNF-graph. The latter, besides VNF connectivity, commonly
encompasses resource demands (e.g., computing demands for VNFs and band-
width demands for the graph edges), which may either be directly specified by the
client or may be derived from service Key Performance Indicators (KPIs).

A key requirement for the deployment of VNFs, either on private datacent-
ers or on public cloud infrastructures (usually termed as NFV infrastructure—
NFVI), is VNF-graph embedding, i.e., the assignment of VNFs and the corre-
sponding VNF-graph edges onto the respective NFVI counterparts (i.e., servers
and network links). The general case of this problem (i.e., topology embedding)
is known to be NP-hard [10] and not efficiently solvable, even when polyno-
mial boundaries [11] or restrictions [12] are applied on the problem parameters.
The problem complexity is retained even for special types of substrate network
topologies [13]. VNF-graph embedding can be seen as a special case of topology
embedding [14], at which the request graphs are directed (as opposed to virtual
network embedding, where the virtual network graphs are commonly undirected).

VNF-graph mapping optimization has been mainly tackled using heuristics [6,
8, 14, 15] and exact methods [5, 7, 9, 16–20]. Heuristics and greedy algorithms
generate embeddings with typically low solver run-times, but usually at the
expense of a considerable optimality gap. On the other hand, exact methods may
achieve near-optimal solutions; however, their inherent computational complexity
introduces significant scalability limitations. As such, exact methods constitute a
feasible approach only to small-scale embeddings.

Considering these limitations of heuristic and exact methods, Artificial intelli-
gence (AI) and Machine Learning (ML) have recently drawn significant attention
as viable alternatives to the solution of NP-hard problems [21, 22]. Numerous AI/
ML-assisted methods have been particularly developed for the VNF-graph embed-
ding problem [23]. Within the domain of AI, we particularly focus on genetic algo-
rithms (GA), which demonstrate high potential for generating efficient solutions for
this class of problems. Yet, their efficiency is not well understood, since they have
been rarely employed for VNF-graph embedding.

1 3

Journal of Network and Systems Management (2023) 31:81 Page 3 of 41 81

In this respect, we study GAs as an alternative approach to the VNF-graph embed-
ding problem, extending our previous work in [24]. In particular, we have extended
our previous work as follows: (i) we analyze the behavior of GAs using a model
based on state space search, (ii) we discuss in more detail the dynamic parameter
adjustment of our proposed GA, (iii) we discuss related work on the application of
GAs in the SFC embedding problem, (iv) we study the impact of a range of GA fea-
tures on SFC embedding efficiency by comparing among a set of GA variants, and
(iv) we benchmark the most efficient GA variant against a state-of-the-art method
(i.e., BACON [25]), uncovering notable gains in terms of resource efficiency.

In more detail, the main contributions of our work are the following:

• The operation of GAs is defined by many parameters; thereby, in order to main-
tain efficiency and adaptability to different problem configurations, it is nec-
essary to adjust these parameters to each particular problem instance. To this
end, we have developed a dynamic parameter adjustment procedure, which is
executed in parallel with the SFC embedding, empowering the proposed GA to
adapt to different problem configurations.

• In order to analyse the behavior of GAs, we have developed a modeling frame-
work for their functionality, which is based on state space search. As such, we
are in position to study the efficiency of GAs on computational problems, such
as SFC embedding, and also perform the adjustment of the GA parameters. This
GA model is critical for the aforementioned dynamic parameter adjustment.

• We propose a GA that incorporates innovative features, such as dynamic param-
eter adjustment, the structure of procedures, and a heuristic-based approach to
the generation of the initial population. The latter effectively directs the state
space search towards the solution, augmenting the GA. All these features com-
bined empower the proposed GA1 to confront the computational hardness of the
SFC embedding problem.

• We scrutinize the behavior of GAs in terms of SFC embedding, by comparing a
range of GA variants that differ in the features that they employ. This comparison
uncovers various insights regarding the impact of GA features on SFC embed-
ding efficiency. We further quantify the gains of the most sophisticated GA vari-
ant (i.e., GA-PAGA) against a baseline greedy algorithm and a state-of-the-art
heuristic [25].

The remainder of the paper is organized as follows. In Sect. 2, we present the net-
work and request models, and formulate the problem at hand. Section 3 provides
background information on GAs. In Sect. 4, we present a modeling framework for
the functionality and efficiency of genetic algorithms. In Sect. 5, we discuss in detail
our solution for the VNF-graph embedding problem, based on GAs. In Sect. 6, we
elaborate on the dynamic adjustment of the parameters for our proposed GA. In
Sect. 7, we study the efficiency of selected GA variants and compare our solution

1 The source code of our implementation is available in [26].

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 4 of 41

with state-of-the-art based on simulation results on structured topologies. Section 8
provides an overview of related work. Finally, Sect. 9 highlights our conclusions.

2 Problem Description

In this section, we discuss and formulate the SFC embedding problem. More specifi-
cally, we commence with a high-level description of the problem at hand (Sect. 2.1);
subsequently, we introduce a network and request model (Sect. 2.2), followed by the
problem formulation (Sect. 2.3).

2.1 SFC Embedding

Network service deployment on top of virtualized infrastructures raises the need for
the placement of VNFs onto servers. In fact, a network service may encompass a
number of communicating VNFs. In this respect, the communication requirements
are commonly expressed in the form of SFC graphs, which represent both the asso-
ciated computing and communication demands, as illustrated in Fig. 1. As such, the
VNF-graph vertices (i.e., VNFs) and edges should be assigned to their respective
counterparts of the substrate network graph. This so-called SFC embedding prob-
lem requires the coordination of node and link mapping in order to generate effi-
cient solutions. Solutions that decouple these two steps usually yield considerable
sub-optimality, whereas they can also lead more often to request rejections. Figure 1
illustrates an example of SFC embedding onto a two-layer fat-tree topology.

Different SFC embedding optimization objectives (e.g., VNF co-location, load
balancing, energy efficiency) have been pursued by the various existing approaches
(e.g., [5, 11–13, 27–30]). However, considering that a NVFI is practically an edge or
core cloud datacenter, its operator would seek to minimize the embedding footprint,
which, in turn, reduces the communication cost leading to bandwidth conservation.
This is more critical at the inter-rack level, especially for datacenter topologies (e.g.,
fat-trees) that are oversubscribed. Therefore, embedding solutions that co-locate
communicating VNFs within the same rack are more preferable.

In particular, we consider the online SFC embedding problem, at which SFC
requests arrive and are processed one by one. The problem formulation presented in
the following is tailored to online embedding and seeks the optimization of the map-
ping of a VNF-graph, independently of other SFC requests.

2.2 Network and Request Model

2.2.1 Network Model

For the substrate network that hosts the virtualized VNFs, we define the graph
Gs(Vs,Es) , where Vs denotes the set of compute nodes (e.g., servers) at which VNFs
can be hosted, whereas the set Es represents the network links. In every substrate
node z, we assign value rz which denotes its residual capacity. Every substrate link

1 3

Journal of Network and Systems Management (2023) 31:81 Page 5 of 41 81

lu,z within Es that connects nodes u, z is associated with bu, z which denotes the avail-
able bandwidth of the link. In addition, for each pair of substrate nodes u, z, we
define the path hop-count expressed by hu,z.

2.2.2 Request Model

Each embedding request consists of the VNF-graph, modeled by Gv(Vv,Ev) . Each
node n ∈ Vv denotes a VNF, whereas associated value dn expresses its computing
demand. We further express each edge between VNFs i and j of the VNF-graph as

Fig. 1 SFC embedding onto a two-layer fat-tree substrate network topology

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 6 of 41

ei,j . Each edge of the VNF-graph is associated with a bandwidth demand denoted by
di,j.

2.3 Problem Formulation

Let graphs Gs(Vs,Es) and Gv(Vv,Ev) model the substrate network and SFC request,
respectively, as defined earlier. We define the mapping of the nodes in Vv to the
nodes of subset V ′

s
⊆ Vs as:

where xn
z
 denotes whether node n is assigned to z (i.e., a value of 1 implies that there

is an assignment). Furthermore, we define the mappings of virtual edges as the map-
pings of the nodes in Ev to the corresponding nodes in Es , such that:

 where ei,j is the virtual edge connecting nodes i, j of Gv , while u and z are the corre-
sponding nodes of Gs . The efficiency of the mapping is, therefore, defined as:

Equation Cm corresponds to the fitness function of the genetic algorithm and essen-
tially quantifies the resource efficiency in terms of CPU and bandwidth consump-
tion. More specifically, the first term represents the resource efficiency associated
with the whole range of substrate nodes. The second term captures the efficiency
with respect to bandwidth allocation across all substrate links. In this respect, we
define min(bu,z) as the minimum available bandwidth across the links between sub-
strate nodes u, z. The multiplication of this minimum bandwidth by the hop count
gives the available bandwidth along each path used for the mapping of VNF-graph
edges. Note that the minimization of Cm is strongly correlated with VNF co-loca-
tion, since a high degree of co-location imposes a reduction in the path hop-count,
and, thereby, in the second term of Cm.

The SFC embedding problem can be formulated as an embedding cost minimiza-
tion problem for any incoming SFC request, i.e., a SFC mapping is sought that mini-
mizes the CPU and bandwidth consumption in the substrate network. Thereby, the
SFC embedding problem is formulated as:

subject to:

∀n∃z → n ∈ Vv ∧ z ∈ V �
s
∧ xn

z

∀ei,j∃u, z → ei,j ∈ Ev ∧ z ∈ Es ∧ u ∈ Es ∧ xi
u
∧ xj

z

Cm =
∑

z∈Vs

∑

n∈Vv

(rz − dn) +
∑

u,z∈Vs

∑

i,j∈Vv

[(min(bu,z) × hu,z) − di,j]

Minimize
∑

n∈Vv

∑

z∈Vs

xn
z
dn + a

∑

i,j∈Ev

∑

u,z∈Es

f i,j
u,z

(1)
∑

z∈Vs

xn
z
= 1 ∀n ∈ Vv

1 3

Journal of Network and Systems Management (2023) 31:81 Page 7 of 41 81

The first term of the objective function minimizes CPU consumption, whereas the
second terms seeks the minimization of bandwidth consumption. f i,ju,z denotes the
amount of traffic flow on the substrate link (u, z) for the bandwidth demand between
the VNFs i and j. In addition, a comprises a normalization weight that acts as a bal-
ancing factor between the computational and bandwidth cost.

Next, we explain the various constraints that appear in the problem formulation.
Constraint (1) ensures that each VNF is assigned exactly to one substrate node. Con-
straint (2) enforces a capacity limit on substrate links. Constraint (3) implies flow
conservation, i.e., the summation of incoming and outgoing flows of a substrate
node must be zero. Condition (4) ensures that the CPU demands of the assigned
VNFs do not exceed the residual CPU capacity of the corresponding substrate

(2)
∑

i,j∈Vv

f i,j
u,z

≤ bu,z ∀u, z ∈ Vs

(3)

∑
f i,j
u,z

−
∑

f i,j
z,u
= di,j(xi

u
− xj

z
)

i ≠ j,∀i, j ∈ Vv, u ≠ z,∀u, z ∈ Vs

(4)
∑

n∈Vv

xn
z
dn ≤ rz ∀z ∈ Vs

(5)xn
z
∈ {0, 1} ∀n ∈ Vv,∀z ∈ Vs

(6)f i,j
u,z

≥ 0 ∀i, j ∈ Vv,∀u, z ∈ Vs

Table 1 Notations Symbol Description

Gs Substrate network graph representation
Vs Substrate nodes representing servers
Es Substrate network links
lu,z Substrate link connecting substrate nodes u and z
Gv VNF-graph
Vv Virtual nodes representing VNFs
Ev Virtual links
ei,j Virtual edge e connecting nodes i and j

f
i,j
u,z

Traffic flow on substrate link lu,z for the bandwidth
demand of the virtual edge ei,j

xn
z

Virtual node n is assigned to substrate node z
hu,z Hop-count between nodes u, z
rz Residual computing capacity of substrate node z
dn CPU demand of virtual node n
bu, z Available bandwidth of link between substrate nodes u, z
di, j Bandwidth demand of virtual edge ei,j

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 8 of 41

nodes. Lastly, constraint (5) enforces the binary domain constraints for variable xn
z
 ,

whereas condition (6) enforces the causality of the flows f i,ju,z . Table 1 provides a list
of all notations.

3 Background on Genetic Algorithms

Genetic algorithms are optimization techniques inspired by Darwin’s theories on the
evolution of species [31]. They provide efficient solutions in computationally hard
problems, such as combinatorial NP-hard problems [32]. The generated solutions
may yield a degree of sub-optimality, although they may still be efficient and accept-
able [33]. Initially, a genetic algorithm generates a population of possible solutions.
The population is usually generated randomly, but may also be the product of a heu-
ristic procedure [34]. Our proposed solution employs both methods. The members
of the population are called chromosomes; this name implies that the functionality
of the algorithm simulates biological procedures. Every chromosome is a string that
encodes a possible solution and every symbol of the string is called gene. A crucial
factor for the operation of the algorithm is the fitness function, which defines the cri-
terion for the margin between the solution encoded in a chromosome and the desired
solution. The algorithm iteratively executes the following procedures.

Selection. This step simulates the procedure of natural selection, at which the
stronger members of a population survive in the next generation while the weakest
members do not survive.

Crossover. During the procedure of crossover, two chromosomes exchange parts
of their genetic material that are randomly chosen and generate offspring that repre-
sents different solution than their parents.

Mutation. The procedure of mutation refers to the random change of the value
of a gene, similar to the biological notion of mutation. Mutation may generate solu-
tions that are not produced by crossover, thereby, directing the search in different
parts of the search space.

Each round of sequential execution of the procedures is called generation. Even-
tually, the population becomes homogeneous converging to a strong solution. This
outcome stems from the fact that the chromosomes of higher fitness prevail through
the procedure of selection over the weaker chromosomes. The genes that are primar-
ily responsible for the high fitness are spread through crossover to a large part of
the next generation population. A genetic algorithm is terminated when the desired
solution has been computed or when the population has become homogeneous and
converges to a solution.

A particular limitation of genetic algorithms is the premature convergence of the
population to some local optimum, i.e., failing to compute the global optimum which
commonly comprises the objective of the algorithm. This behavior occurs when the
search for the optimal solution is confined within a subset of the state space, where
the desired solution is not included. The GA model that we introduce in the follow-
ing section lets us clarify why the desired mapping is unreachable under certain con-
ditions for problems, such as the SFC embedding.

1 3

Journal of Network and Systems Management (2023) 31:81 Page 9 of 41 81

4 Genetic Algorithm Modeling

In this section, we model GA as a state-space search. State space is a method of
representing a problem by defining all the possible states at which the problem
can fall into, i.e., all the possible solutions of the problem. Therefore, the solution
of the problem lays in its state space. It can be identified by searching the state
space and it is reasonable to claim that by studying the state space of a problem,
we can draw important conclusions about the problem. Modeling an algorithm as
state-space search empowers us to analyze how it converges to the final solution
across the entire solution space.

Such analysis is critical for understanding the functionality and behavior of a
GA. Without loss of generality, we consider the case of the simple genetic algo-
rithm; that is an algorithm without variations from the typical design of the GAs.
The literature includes lots of variations of the typical simple GA that improve
certain features of the algorithm, based on the special requirements of the prob-
lem under consideration in each case. These are heuristics used for the population
generation and methods that prevent the premature convergence of the popula-
tion. These variations adhere to the same principles and employ the same genetic
procedures. Therefore, the modeling of a typical GA can be also applied to these
variations without loss of generality.

State space, also known as solution space in some disciplines, is modeled as a
directed graph C(S, A) where:

• S is the set of nodes that correspond to all the states of the space that may be
considered as possible solutions to the problem (or else all the configurations
of the problem). Every state can be encoded as a chromosome in the case of a
GA.

• A represents the set of edges that denote the possible actions that may be
applied during a search on S; these are the possible transitions between states.
Each action is applied to two states and defines the transition of the search
between these states. Any two nodes may be connected by more than one
edge, if there are more than one ways of transition between the states. In the
particular case of the GA, transition between two states may occur by the pro-
cedures of crossover and mutation that are modeled by distinct edges in C.
The genetic procedures define the following corresponding actions:

– Mutation actions connect states that can result from the procedure of muta-
tion. In this respect, for edge ea,b , state b is the product of the mutation of
a.

– Crossover actions generate offspring states from parents. For edge ea,b ,
state b is the output of crossover applied to state a. In this respect, state
b inherits part of its genotype from a. For instance, the first n bits in the
description of a may be identical to the first n bits in the description of b.

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 10 of 41

The actions are probabilistic reflecting the probabilistic nature of the genetic pro-
cedures. The search in the space is defined by the sets of the initial and the goal
states:

• Set P ⊂ S denotes the set of initial states that form the initial population of the
algorithm.

• Set F ⊂ S is the set of goal states, i.e., the states that satisfy the objective of
the algorithm which is evaluated by the fitness function f.

Let us label every s ∈ S with its fitness fs . The current population defined in set
T ⊂ S at any generation evolves into the new population defined in set T ′ using the
actions on the edges and the probabilities of executing these actions. The selec-
tion procedure removes the low-fitness nodes from the population.

Without loss of generality, we model this operation as the probabilistic tran-
sition of the population from lower-labeled nodes to higher-labeled nodes in C.
This model captures the ability of the genetic algorithms to generate effective
results. Based on this consideration, when the consecutive transitions in C lead to
nodes with high label, all the members of the population, which may use actions
to move to these states, have high probability of performing this transition. This
is an explanation for the convergence of the population to some local or global
optimum.

A goal state is reached if and only if ∃g → g ∈ F ∧ g ∈ T . This implies that
given P and S, reaching goal state g ∈ F is feasible, if and only if there is path
from node j ∈ P to the node that denotes g. The probability of effectively reach-
ing g is determined by the probabilities of performing the actions on the path.

In order to model the behavior of a sophisticated algorithm as a state space
search, we have to determine how this search exploits the properties of the state
space so as to perform an efficient and not random search. These properties are
found in the structure of the state space and the relationships among the states.
The elements of a state space may share structural relationships, which we dis-
cuss in the context of the SFC embedding problem.

Definition 1 (Structural relationships) The elements of set S′ ⊂ S have structural
relationships, if and only if their graph representations share common elements, i.e.,
nodes and edges. For any a, b ∈ S� , there are corresponding graphs A and B, such
that A = K + G and B = D + G , where G is a common subgraph to all graphs in S′.

In the SFC embedding problem, the states can be represented as subgraphs of
the substrate network representation, which denote the mapping of the SFC graph
to the substrate resources. We illustrate such an example in Fig. 2. Both mappings
share common nodes that host the VNFs of the SFC and common substrate links.

Definition 2 (Breadth of influence) Structural relationships among states may be
global or local depending on their breadth of influence. Global relationships are in
effect in the whole space S. Let E be a global relationship defined in S. For every

1 3

Journal of Network and Systems Management (2023) 31:81 Page 11 of 41 81

S′ ⊂ S , the relationship E between any a, b ∈ S� is defined and evaluated as true.
Local relationships are in effect in a subset of the state space. Let H be a local rela-
tionship defined in Sb ⊂ S . There is a set Sa ⊂ S in which H is not defined and not
evaluated as true, where Sa = S − Sb.

The importance of structural relationships in graph problems solved by GAs is
shown in the next lemma.

Lemma 1 Any consecutive states in path h of graph C which denotes state space S
share structural relationships.

Proof By definition, path h in C connects states that are formed by the genetic pro-
cedures of crossover and mutation. During crossover, chromosome c is formed by
combining structural elements of chromosomes a and b. Then, a and b have struc-
tural relationships with c. During mutation, chromosome d′ is formed by the random
variation of genes of chromosome d per generation; then d′ and d share common ele-
ments. As a consequence, for every state s in h, there is at least one state s′ also in h,
which shares common elements with s. ◻

We notice that, after some generations, the population that is generated may be
completely altered and may not contain any common chromosomes with the initial
population; it is possible that the members of the initial and the final population
will not share structural relationships. For any two consecutive generations m and
m + 1 though, the members of their populations share structural relationships as the
chromosomes of m + 1 are products of the population of m under the genetic proce-
dures. In conclusion, any two consecutive nodes on path h denote states that share

Fig. 2 Example of mappings with structural relationships in nodes 3, 4 and the edge that connects them

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 12 of 41

structural relationships, but this is not necessarily in effect in more distant nodes on
h. Lemma 1 and implies the following corollary:

Corollary 1 Reaching a goal state is feasible for a genetic algorithm, if and only if
there is state p ∈ P and state g ∈ F between which there is sequence H of nodes,
such that consecutive nodes hi and hi+1 in H have a structural relationship.

In order to identify the hardness of problems in the field of computational com-
plexity, we group them in classes of problems with similar characteristics and study
their behavior. We follow this concept and further examine two classes of problems
with similar characteristics and shed light into the efficiency of GAs. The two classes
of problems are defined using general schemas, namely n-subgraph and k-subgraph.
These schemas are formulated as languages. All the languages that describe prob-
lems in one of these classes are in compliance with the corresponding schema.

In the remainder of this section, we formulate decision problems and states as
languages. Then language LD describes the problem while language LS its states.
For the decision problem described by language LD , there is language LS , such that
every state in state space S of LD belongs to LS and the problem is resolved as true if
∃s ∈ S → s ∈ LD.

We particularly care about function problems that can be efficiently solved by
GAs. As such, we define them on the corresponding decision problem and language
L under the general definition:

L: find s in S so that s ∈ LD
Next, we define as languages two classes of problems related to SFC embedding

and study their hardness when computed by GAs.

The n-subgraph class
n-subgraph = {G, n,w | There is n-node subgraph N in n-node graph G of maxi-

mum degree Δ(G) > 0 , where property w is valid.}
The states of the state spaces of the instances of the problems that belong to the

n-subgraph class belong to the following language:
n-subgraphS = {N| N is an n-node graph N}
The state space for each instance of problem in the class consists of all the possi-

ble graphs that may be generated using the n-nodes of G and all the combinations of
its edges. The demand for Δ(G) > 0 excludes problem instances of edgeless graphs.

The number of states in S can be reduced if we consider a bounded number of
edges for N. The states have global structural relationships. The elements of the state
space are all graphs of the form G(V, E), where V is common to all. This constitutes
a global structural relationship.

In Sect. 6, we discuss the problem of Parameter Adjustment that belongs to
this class. We particularly utilize parameter adjustment for the optimization of the
operation of our genetic algorithm. Another well-known problem that belongs in
this class is the minimum spanning tree problem [35], at which we seek to find a
spanning tree N of minimum weight in weighted graph G. Property w is valid if
N forms a tree and it is minimum in G. The number of edges in N is bounded to
n − 1.

1 3

Journal of Network and Systems Management (2023) 31:81 Page 13 of 41 81

For each problem in the class where the number of edges in N is bounded, the
cardinality l of its state space S equals to l =

(
e

m

)
 , where e is the number of edges

in G and m the number of edges of N.

The k-subgraph class
k-subgraph = { G, n, k,w | There is k-node subgraph K in n-node graph G of

maximum degree Δ(G) > 0 , where property w is valid and n ≥ k}
For the state space S of any problem in this class, the states within are defined

as follows:
k-subgraphS = {K | K is a k-node graph}
Each state space consists of the descriptions of all the possible k-node sub-

graphs of G. Each problem in the class can by sufficiently defined through G and
w.

The SFC embedding problem belongs to this class. Its state space consists of
all the k-node sub-graphs of the state space. Property w is valid, if the set of
k nodes that will host a VNF-graph is within constraints, is connected and has
the minimum sum of weights of all connected k-node subgraphs of G, where
weighted graph G models the substrate network. In order to simplify our analysis,
in this section and without loss of generality, we consider a restricted case of the
SFC embedding problem, at which the VNFs are hosted on exactly k nodes. In
the general case of the problem that is studied in this paper, the VNFs are hosted
at most on k nodes, favoring VNF co-location. The elements of its state space
belong to the following language:

SFC-ES = {Gk | Gk is a k-node graph}
As an example of another problem that belongs to this class, we refer to the

widely studied problem of CLIQUE, which aims at determining the existence of
a k-node complete subgraph in graph G. In CLIQUE, w is satisfied if K is a com-
plete k-node graph.

We further describe the relationships among the elements of the state space
for the problems in the k-subgraph class. The cardinality l of S equals to l =

(
n

k

)
 .

There are structural relationships of local breadth among the elements of S. Each
edge of G (or each pair of nodes) participates in the formation of le =

(
n−2

k−2

)
 sub-

graphs of k nodes as a common structural element. Each node is a common struc-
tural element in the formation of lv =

(
n−1

k−1

)
 subgraphs.

Both structural relationships have local breadth in S, as each edge or node is com-
mon only to a subset of S. If there were global relationships, there would be com-
mon elements for all the states in S, which is not a valid argument. As we show in
Theorem 2, there are states in S that are distinct under the following definition:

Definition 3 (Distinct states) States a, b are distinct, if and only if they correspond
to distinct subgraphs Ga(Va,Ea) , Gb(Vb,Eb) , so that Va ∩ Vb = � and Ea ∩ Eb = �.

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 14 of 41

There are numerous GAs that deal efficiently with problems in the n-subgraph
class [36, 37]. Instead, problems in the k-subgraph class are considered compu-
tationally harder [38]. Note that this assertion is mainly based on empirical evi-
dence. In this respect, we provide a more elaborate explanation based on theoretical
grounds.

The main reason behind the use of a GA for the aforementioned problems is the
development of solvers with low run-time, i.e., much lower compared to an exhaus-
tive search of the state space. To this end, the initial population needs to be rela-
tively small, since a large initial population would lead to a complexity on par with
the exhaustive search. For the problems in k-subgraph class, we show in the rest of
this section that for a relatively small population P ⊂ S , there is subset S′ of the state
space, the elements of which have no structural relationships with the elements in P.
As such, for a relatively large S′ , there is low probability of reaching a goal state in
S′.

Theorem 2 In state space S of a problem described by language L in k-subgraph
class, there are subsets S1 , S2 ⊂ S , such that any states s ∈ S1 and m ∈ S2 are
distinct.

Proof Let i1 and i2 be two instances of a problem described by language L in k-sub-
graph class that are defined by graphs G1 , G2 with respective state spaces S1 , S2 .
Let us now form problem instance i3 in graph G3 that is generated by connecting
the nodes of G1 and G2 with arbitrary placed edges. The state space of i3 can be
expressed as the union S3 = S1 ∪ S2 ∪ A , where A is the set of states defined in sub-
graphs of G3 that consist of nodes from both graphs G1 and G2 . It is clear that any
states s and m are distinct, if s ∈ S1 and m ∈ S2 . This is a general property of the
problems in k-subgraph class. ◻

In the next theorems, we examine the effectiveness of crossover and mutation in
exploring S.

Theorem 3 Most states in space S of the problem described by L in k-subgraph class
are infeasible to be generated by applying crossovers on a population g of relatively
small size.

Proof Following the arguments on the proof of Theorem 2 and Corollary 1, a popu-
lation generated by the elements of graph G1 is not feasible to generate the states in
G2 using crossover. Then for a small population g, subgraph G1 is smaller in size
than G2 . This implies that the states that are feasible to be generated by g are less
than the states that cannot be generated. ◻

Theorem 4 For subsets of distinct states S1 and S2 of state space S of a problem
described by L in k-subgraph class, a population that denotes states in S1 has low
probability of generating states in S2 through mutation.

1 3

Journal of Network and Systems Management (2023) 31:81 Page 15 of 41 81

Proof Every chromosome after mutation has probability Pr = |S2|∕|S| of generat-
ing a chromosome that represents a state in S2 . From Theorem 2, we derive that
S = S1 ∪ S2 ∪ A and |A| =

(
n

k

)
−
(
n1

k

)
−
(
n2

k

)
 , where n, n1 and n2 are the nodes that

form S, S1, S2 respectively and S = S1 + S2 . These imply that |A| > |S2| and |S2| is
significanlty smaller than |S| . As such, probability Pr is low. ◻

Theorems 3 and 4 imply that finding the global optimum on a state space is
hard for problems in the k-subgraph class. Under certain conditions, a goal state
will probably not be reached. The demand for efficiency imposes the generation
and maintenance of relatively small populations throughout the operation of a GA,
thereby, reaching a goal state is uncertain. These observations dictate our choices
(i.e., heuristic population generation, multiple execution of the GA in different pop-
ulations) in the design of the proposed GA, as explained in Sect. 5.

The arguments used in the proofs of the theorems are not valid for problems in
the n-subgraph class. The states of any instance of a problem within the n-subgraph
class that is defined in graph G include all the nodes of G and this structural rela-
tionship is global. In the general case, the problems within the k-subgraph class are
harder to solve using GAs compared to the n-subgraph class.

5 Genetic Algorithm

During the development of GAs, various critical issues are raised that are inherent to
the nature of GAs. In order to address them, it is often necessary to apply variations
on the typical design of GAs [34, 39]. In the following, we discuss the variations
that we apply.

Maintenance of efficient solutions. In the common approach, the procedures of
crossover and mutation modify the genotype of the population without preserving
the initial chromosomes. This design may fail to preserve an efficient solution on the
population that may take part in mutated or crossover procedures.

This issue is resolved by including in the same population both the parents and
their offspring; similar to biological systems where populations consist of a mixture of
parents and offspring. During mutation, we include both the original and the mutated
chromosomes in the population. This technique increases the size of the population
during crossover and mutation. Then the selection procedure reduces the population
size to its default size. The same reasoning satisfies the need to maintain the best solu-
tion computed during each generation as a candidate output of the algorithm.

Premature convergence to local optima. A significant issue concerning GAs, in
general, is the convergence to an undesired solution. This stems from the restriction
of the search in a part of the state space that contains only local optima. In this case,
the population becomes homogeneous, before converging to the optimal solution.

The technique developed for the avoidance of premature convergence, in our
work, is based on the concept of competition that takes place in stages and in sets
of competitors. The competitors that prevail in each set form the groups of com-
petitors that will compete in the next stage of the competition. The winners of the

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 16 of 41

group stage are nominated in the last stage of the competition, which designates the
stronger competitor as the winner of the competition.

The GA is executed in n groups of n sets of chromosomes. In each set, there are p
chromosomes that constitute the population for the algorithm, which is executed for
g generations. The best solution generated in each set is promoted to form the popu-
lation of the group that it belongs. Subsequently, in each group, the algorithm is
executed over the population generated in the sets. The final output is computed by
executing the algorithm on the population generated on the groups. This technique
develops a structure of procedures that is sketched in Fig. 3.

In this method, the algorithm combines in the group stage the local optima dis-
covered in the sets, avoiding the confinement within a single local optimum. We
explain the benefits of this technique based on the theory developed in theorems 3
and 4. In the i-th execution of the algorithm, the subset Si of the state space S is
explored, which differs from the subset Sj explored by the j-th executions of the
algorithm. Also, the subset S − Si that is inaccessible by the initial population of i
also differs from the subset S − Sj of j. Then for large S executions, i and j generate
distinct mappings. Computing in the group stage the mappings generated from sub-
sets Si and Sj enables the generation of the combined best solutions found in subset
Sc = Si ∪ Sj , resulting in a more advanced exploration of S. Set Sc includes map-
pings that are generated partially from each of the two subsets Si and Sj achieving
a broader exploration of S. Simulation results demonstrating the advantages of this
technique are presented in Sect. 7.3.

A computational benefit of this approach is that computations in sets and groups
can be executed in parallel, thereby, significantly reducing solver run-time in multi-
core systems. We have used a multi-threaded implementation in order to enable par-
allelism. The computation of each group is sequential while the computations of the

Fig. 3 Structure of procedures

1 3

Journal of Network and Systems Management (2023) 31:81 Page 17 of 41 81

sets in each of the groups run in parallel, reducing the the run-time that is required
for the sets to produce the population that will be used in the groups.

Chromosome representation. The mappings of the VNF-graph elements to the
substrate network resources and the chromosomes are represented by an array H of
length equal to the order of the VNF-graph. In position i of H, we place the index of
substrate node z ∈ Vs , which hosts the node i ∈ Vv.

Initial population generation. The operation of the GA consists of the gen-
eration of an initial population of chromosomes and the iterative execution of the
genetic procedures, as shown in Algorithm 1. There are two approaches for the gen-
eration of the initial population, i.e., the random and the heuristic generation of its
chromosomes. In the former approach, the chromosomes represent a set of possible
solutions chosen randomly from the state space (or else solution space) of the prob-
lem. In the latter approach, a heuristic is employed to form the population and direct
the search in specific parts of the state space. We employ both methods; the larg-
est part of the initial population is generated heuristically and, subsequently, for the
remaining part of the population we apply random generation. The heuristic genera-
tion of the population improves the fitness of the output of the GA, as it favors solu-
tions that minimize inter-rack traffic.

For the population generation, the heuristic only considers the servers that have
sufficient capacity for accommodating the minimum VNF demand; that is subset
V ′
s
⊆ Vs . As such, the algorithm avoids the computation of chromosomes that are

incapable of generating valid solutions and restricts the computation of the state
space to states that are more likely to constitute valid mappings. Then for every
s ∈ V �

s
 , the heuristic generates a chromosome that maps all the VNFs of the chain

to s. Even if this mapping is not valid, during crossover and mutation valid map-
pings are generated that favor the co-location of multiple VNFs on the same server,
directing state space search to parts of the state space that meet the minimum traffic
demand. The rest of the population consists of randomly generated mappings of the
VNFs to the nodes in V ′

s
 . In case that the size of the population is smaller than the

size of V ′
s
 , the ratio of heuristically to randomly generated chromosomes is set to

0.8. The generated initial population also exhibits high diversity, which advances its
operation. In theory, the initial population of a genetic algorithm should exhibit high
diversity, which usually implies that it covers a wide range of the state space.

The use of this heuristic directs the state space search to states that favor the map-
ping of communicating VNFs on the same servers, alleviating the communication
cost and exploiting the computational capacity of the servers more efficiently. In
addition, states that include substrate nodes that are not capable of hosting any VNF
are excluded from computation, reducing the size of the state space to by computed.

The execution of the genetic procedures in each chromosome depends on its fit-
ness, computed by fitness function Cm using input graph Gs , which is a representa-
tion of the substrate network on its current computational load and traffic. In order
to determine the number of times the genetic procedures will be executed in a GA,
we define the parameter generations. For the formation of sets and groups and their
computation, we also use the parameter supergenerations. Specifically, this expresses
the number of times that the GA will be executed in the sets and groups that will
eventually generate the embedding. The thresholds of mutation and crossover

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 18 of 41

probabilities along with a random number generator specify whether the two pro-
cedures are executed in every chromosome. These parameters along with the size of
the population, the size of each VNF-graph and the current network state affect the
operation and the efficiency of the algorithm. These parameters are inserted into the
algorithm as the setup on which the algorithm will be applied.

In the following, we elaborate on the three genetic procedures.

1 3

Journal of Network and Systems Management (2023) 31:81 Page 19 of 41 81

Selection. The selection procedure, described in Algorithm 2, is executed only if
the population is not homogeneous; otherwise, its execution is pointless. Whereas
the procedures of crossover and mutation increase the population in the current gen-
eration, selection maintains a constant size for the population of the next generation.
We maintain a population of constant size in order to control the complexity of the
algorithm. Homogeneity is evaluated by computing the deviation of the population
fitness. If the population is deemed to be heterogeneous, the fitness of each chromo-
some is computed and if its value is lower than c, the chromosome is added in the
future population. This occurs for c = fmin + dev × q , where fmin is the value of the
strongest chromosome of the current population, dev the deviation of the fitness val-
ues of the population, and q is a randomly generated value.

Crossover. This procedure generates new chromosomes that are added in the
current population. For every pair of sequentially chosen chromosomes (e.g., i, j),
we generate a random value q. If q is smaller than the crossover probability, the
two chromosomes produce two offsprings. Given a random number h, chromosome i
copies its first h genes to the first offspring and the rest to the second one. Likewise,
chromosome j copies its first h genes to the second offspring and the rest to the first
one (see Algorithm 3).

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 20 of 41

Mutation. This procedure is sequentially executed in every chromosome. If a
randomly generated value q1 is smaller than the mutation probability, a copy of the
chromosome is generated and mutated. A gene of the copied chromosome is ran-
domly chosen and a random value is assigned to it. The mutated chromosome is
added to the population, as described in Algorithm 4.

Fig. 4 During crossover, pairs of chromosomes exchange parts of their genetic codes. Mutation regards
the random variation of randomly selected genes in every chromosome

1 3

Journal of Network and Systems Management (2023) 31:81 Page 21 of 41 81

A simplified example of the procedures of crossover and mutation is illustrated in
Fig. 4.

6 Dynamic Parameter Adjustment

Identifying the optimal values for the parameters in the GA setup entails a significant
challenge and it is subject to the problem that the GA is applied. Merely increasing
the values of these parameters will increase the complexity of the algorithm, while
decreasing these values will affect its efficiency. As such, the quest for optimality is
crucial. A common approach is to identify the appropriate values through extensive
experimentation. Instead, we rely on a computational solution that enables adapt-
ability across different topologies and different instances of the problem.

6.1 Parameter Adjustment as an Optimization Problem

Parameter adjustment is always problem-oriented. In this respect, we have to take
under consideration the special properties of each problem instance on which the
genetic algorithm is applied. In particular, we approach parameter adjustment as an
optimization problem and rely on GAs for its solution. In this section we analyse the
efficiency of the parameter adjustment problem and prove that it is in the n-subgraph
class and therefore it is computationally tractable. In this analysis, we use the same
notation and language-oriented descriptions as in Sect. 4.

Let function fg(Q, i) produce the output of GA g on input i using setup Q. We
seek to determine the minimum values for the elements of Q that maximize the out-
put of fg . Minimization of the values in Q implies minimum computational burden,
while maximizing fg implies maximizing the effectiveness of the algorithm. It is
reasonable to apply bounded values in the elements of Q so as to maintain efficiency
and avoid undesired arbitrary large values. As such, we define the Parameter Adjust-
ment (PA) problem, as follows:

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 22 of 41

PA: Given i, a, b find minimum Q which maximizes fg(Q, i) where
∀q ∈ Q → q ∈ [a, b]

Theorem 5 PA is in n-subgraph class.

Proof We show that PA is reducible to a problem within the n-subgraph class. Con-
sider graph G(V, E) where V consists of n weighted nodes to which we assign all the
values in [a, b] and the zero value; in node n0 . For every edge q(n0, nz) that we place
in G, we assign to parameter q of Q the weight of node nz . Thereby, PA is reduced in
finding the optimal placement of the edges of the form q(n0, nz) that will construct
G in order to achieve the objective of PA. Graph G is an n-node graph with edges
equal to the number of parameters in Q and satisfies property w, as it is described by
the objective of PA and its construction. It is then a problem within the n-subgraph
class. ◻

Based on the model presented in Sect. 4, the PA problem can be approached
efficiently using a GA. Another advantage is that fg is an increasing function with
respect to each parameter. By increasing each parameter alone the genetic algorithm
will explore a larger part of the state space, since it will either generate more chro-
mosomes or perform more iterations of the genetic procedures and, thereby, increase
its efficiency. This property implies that PA is a computationally tractable problem.

6.2 Genetic Algorithm for Parameter Adjustment

We have designed and implemented a Parameter Adjustment Genetic Algorithm
(PAGA) in order to identify near-optimal values during the execution of the embed-
ding algorithm. PAGA is shown in Algorithm 1. It differs from the SFC embed-
ding version in its population, which consists of candidate parameter setups for the
embedding algorithm. The fitness of each chromosome in PAGA is computed by
running an instance of the embedding algorithm on the setup that the PAGA chro-
mosome represents in order to determine its efficiency. The efficiency is defined by
function Cm , similar to the SFC embedding algorithm.

The functionality of PAGA is determined by the specification of its operational
parameters. These comprise the setup on which PAGA will operate and the range of
its output values. Starting from the latter, the range of values that PAGA produces
for the embedding algorithm parameters will affect its performance and should be
bounded in order to ensure efficiency. The range of output values in our evaluation
(Sect. 7.1) is defined as follows:

• Population size: 440 - 490
• Generations: 40 - 60
• Supergenerations: 4 - 6
• Crossover probability: 0.10 - 1.00
• Mutation probability: 0.10–1.00

1 3

Journal of Network and Systems Management (2023) 31:81 Page 23 of 41 81

We have determined empirically that the PAGA may function effectively on a setup
of 30 chromosomes in its population, 30 generations, 2 supergenerations and for
crossover and mutation probabilities of 0.85 and 0.05, respectively. The parameter
adjustment procedure is dynamic to the operation of the network, i.e., the output
is not computed using static data. The overall procedure is described in Fig. 5. The
advantage of this approach is that the embedding algorithm may be adapted to any
network topology using inputs at real-time.

PAGA is executed in parallel with the embedding algorithm in order to compute
an efficient setup for each SFC embedding problem configuration. The setup that
corresponds to a specific problem configuration is stored in a database and used on
demand. For the sake of simplicity, we define an abstract and restricted description
of the problem configuration based on two parameters. More precisely, the config-
uration is defined as a 2-tuple (v, q), where v = Vv is the size of the VNF-graph,
whereas q represents a classification determined by the ratio of the CPU demands
of the VNFs currently embedded over the total CPU capacity of the substrate nodes.
More precisely, we define m classes and q = ⌊m × (ccur∕cmax)⌋ , where ccur denotes
the CPU demands of VNFs and cmax is the CPU capacity of the substrate nodes. In
our implementation, we set m = 4 . For each combination of (v, q), a single setup is
stored in the database.

PAGA requires the handling of a number of requests by the embedding algorithm
in order to adapt to all the possible problem configurations. To generate an efficient
embedding procedure, we define a basic setup for initiating the algorithm, which
will be used when an optimal setup is not available for an incoming request. As the
database will be gradually populated, the embedding algorithm will use the stored
setups to handle the new requests with respect to the problem configuration.

The basic setup for the implementation of the embedding algorithm in our
simulations (Sect. 7.1) utilizes a population of 440, whereas the generations and
supergenerations parameters are set to 40 and 4, respectively. In addition, the
crossover and mutation probabilities are set to 0.5 and 0.2, respectively. By this
configuration, PAGA strikes a balance between efficiency and solver run-time,
and also provides efficient embedding results, until it has converged to the opti-
mal setup.

When a request arrives, the embedding algorithm queries the database for a
corresponding setup. If the setup is not found, the embedding algorithm uses the
stored setup that better approximates the request and, subsequently, PAGA com-
putes an optimal setup for the request, which is eventually stored in the database
for future use. The proximity of each stored setup to the request is computed as
the euclidean distance d(a, b), where a is the configuration (v, q) of the request
and b the configuration (v�, q�) of the stored setup. An optimal setup implies that
d(a, c) = 0.

Gradually, all possible configurations lead to certain stored setups. After that,
there is no need to utilize the basic configuration, as well as the PAGA. The oper-
ation of the embedding algorithm is then optimized. In our execution environ-
ment, PAGA achieves the optimization of the operation of the embedding algo-
rithm at about 500 requests. For these requests, the algorithm, using the basic
setup, generates efficient mappings that yield a small and acceptable overhead in

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 24 of 41

its operation till its convergence to the optimal setup. In this respect, Fig. 6 illus-
trates the convergence to an optimal setup.

Table 2 shows an instance of the database generated during the simulation. As
stated earlier, in the first column of the table the problem configuration is described
by two values; the first one indicates the size of the incoming request v, while the
second one the network state classification q. Both the table and the basic setup indi-
cate large values of the mutation probability, which deviate from typical values, i.e.,
around 0.05. The values for the basic setup are computed using PAGA, as well, and
this result is in line with the model developed in Sect. 4. There are states within the
state space of the instances of the SFC embedding problem that can not be explored
by executing crossover on the initial population. The extensive use of mutation ena-
bles the exploration of parts of the state space that cannot be reached via crossover,
increasing the efficiency of the generated solutions.

Fig. 5 Flow chart of SFC embedding with PAGA

1 3

Journal of Network and Systems Management (2023) 31:81 Page 25 of 41 81

7 Evaluation

In this section, we initially present the evaluation environment (Sect. 7.1), followed
by the methods of comparison (Sect. 7.2), and the discussion of our evaluation
results (Sect. 7.3), where we assess the SFC embedding efficiency of GA variants
with different features. In addition, we compare the outstanding GA variant against a
baseline greedy algorithm and a state-of-the-art heuristic, i.e., BACON [25].

Fig. 6 Deviation from optimal setup

Table 2 Database instance

Problem configura-
tion

Population Generations Super-generations Crossover &
mutation prob-
ability

5 0 464 58 6 0.91 0.97
5 3 486 56 6 0.63 0.29
9 3 470 50 6 0.77 0.35
8 3 444 48 4 0.90 0.62
7 3 446 56 6 0.73 0.29
6 3 454 48 4 0.96 0.44

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 26 of 41

7.1 Environment

The algorithms and the evaluation environment are implemented in Java 15 and
executed on a computer equipped with a 16-core Intel Xeon CPU at 2.1 GHz and 8
GB RAM. The simulations are conducted on a structured network topology. More
specifically, the topology corresponds to a 3-layer fat-tree datacenter network, which
comprises a common NFVI. The simulated fat-tree topology consists of 12 pods,
which encompass 72 racks and 432 servers, in total. Each server is equipped with 8
CPU cores at 2.5 GHz. The capacity of links connecting the servers with the Top-
of-the-Rack (ToR) switches is 1 Gbps, whereas the links at the upper layers of the
topology have capacity of 10 Gbps. The source code and compiled binaries for the
simulation environment are available at [26].

Each VNF-graph request consists of a diverse number of nodes, picked randomly
within the range of 5 to 9. In our simulations, the VNF-graphs have tree-based struc-
ture and consist of two branches. The CPU demand for each VNF in the request
varies between 2 and 6 GHz. Likewise, the bandwidth demands in the VNF-graph
vary between 20 and 100 Mbps. The VNF-graph requests are expiring. In particular,
every embedded SFC is associated with a lifetime picked randomly within the range
[0, y], it determines the number of requests that have to be served before it expires.
In order to evaluate resource utilization in conditions of resource saturation, we set
r = 1620 . Upon expiring, the embedded SFCs are removed from the network and all
reserved resources are released.

7.2 Comparison Methods

Our proposed GA is compared against a baseline greedy algorithm and a state-of-
the-art solution. The greedy method, described in Algorithm 5, sorts the nodes of
the substrate network and the VNF-graph in descending order based on their capaci-
ties and demands. Subsequently, in every substrate node of the sorted list with the
largest available capacity, the algorithm maps sequentially the VNFs with the largest
computing demand that can fit into the respective node, while taking into account
bandwidth constraints. The algorithm terminates as soon as all VNFs have been
mapped. If the mapping is not feasible (i.e., when either the computing or bandwidth
demands are not met), the execution of the algorithm is terminated with the rejec-
tion of the request. The source code for the greedy algorithm is available at [26].

1 3

Journal of Network and Systems Management (2023) 31:81 Page 27 of 41 81

For the comparison against the state-of-the-art, we rely on the heuristic approach
employed by BACON [25]. The rationale behind this comparison method is that
BACON comprises a prominent SFC embedding solution that has the same objec-
tives with our proposed GA method, i.e, VNF consolidation and minimization of
inter-rack traffic.

The BACON heuristic is based on the criticality ranking of the VNFs. The criti-
cality of a VNF is defined as proportional to the interconnections it has with other
VNFs in the SFC, i.e., the degree of the corresponding virtual node in the VNF-
graph. BACON also considers latency between servers that host interacting VNFs as
a criterion of efficiency. In our implementation, we consider the hop-count between
servers as a measure for latency. The minimization of hop-count comprises an objec-
tive of our problem formulation and, in our simulation environment, this implies the
minimization of latency between interacting substrate nodes.

BACON applies a server ranking criterion, namely Betweeness Centrality (BC),
for choosing the most efficient substrate node for hosting each VNF. In structured
topologies, such as fat-trees, the substrate nodes exhibit high availability and homo-
geneous properties, which results in the same ranking for substrate nodes. In order
to alleviate this, in each iteration of the simulation, the BACON heuristic considers
only the servers that have sufficient capacity to host the VNF (of the SFC) with the
minimum demand. As such, the BACON heuristic ranks the servers in descending
order based on BC, and in every step it searches for the server with the highest BC
that generates an efficient mapping.

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 28 of 41

7.3 Evaluation Results

7.3.1 Comparison Among GA Variants

We initially seek to gain insights into the efficiency of GAs and the impact of cer-
tain features, when these are incorporated into the design and implementation of a
GA. To this end, we compare the efficiency among four GA variants, which differ
in terms of the following supported features: (i) generation of the initial population
using the heuristic described by Algorithm 5, (ii) structure of procedures of sets and
groups, exemplified in Sect. 5, and (iii) dynamic parameter adjustment using PAGA,
as explained in Sect. 6. Note that the absence of the dynamic parameter adjustment
from a GA variant implies the use of the basic parameter setup (see Sect. 6.2). The
features supported by each GA variant are illustrated in Table 3.

Figure 7 depicts the request acceptance rates for these GA variants in simulations
conducted with the fat-tree (i.e., structured) topology. Relying on GA-B for the gen-
eration of the initial population with the basic parameter setup yields low acceptance
rates. This stems from the fact that the search of the state space is not directed to any
specific areas, and, thereby, the algorithm fails to adapt effectively in the search.

Next, we focus on the comparison between the remaining GA variants, which
employ the heuristic and lead to notably higher acceptance rates. A comparison
between GA-H and GA-HS uncovers that the structure of procedures enables a more
advanced search of the feasible state space, generating better embeddings with
slightly higher acceptance rates. The average runtime for handling each request with
the basic parameter setup in our system is about 600 msec (this pertains to the three
aforementioned GA variants).

The GA-PAGA variant, instead, relies on the most sophisticated parameter setup
method (Sect. 6.2), which leads to higher SFC embedding efficiency, as shown in
Fig. 7. In particular, this gain stems from the fact that after the adjustment procedure
has been completed, the behavior of the network is stable with the highest accept-
ance rate. This gain in the embedding efficiency of GA-PAGA is slightly outweighed
by an increase in the solver runtime. More specifically, the average runtime for han-
dling each request is 1.1 sec and is proportional to the size of the VNF-graph and the
supergeneration parameter.

Our evaluation results indicate a more efficient exploration of the state space by
our proposed GA-PAGA, in comparison to the other GA versions. This is mainly
attributed to the GA tuning using PAGA, as well as the utilization of the structure

Table 3 GA variants vs.
supported features

Basic
parameter
setup

PAGA Initial popula-
tion with heu-
ristic

Structure of
procedures

GA-B X
GA-H X X
GA-HS X X X
GA-PAGA X X X

1 3

Journal of Network and Systems Management (2023) 31:81 Page 29 of 41 81

of procedures. In addition, some of the GA variants under consideration (includ-
ing PAGA) further benefit from the heuristic generation of an initial population that
speeds up the convergence into the goal states. These advanced features eventually
turn GAs into more efficient computational methods for SFC embedding.

The margins among the GA variants are reflected in the resource utilization,
especially when the capacity is saturated. Figure 8 depicts server CPU utilization
throughout the entire duration of the simulation. According to this plot, the GA-
PAGA variant yields more efficient CPU utilization. This plot also corroborates the
CPU utilization gains stemming from the advanced features employed by the GA
variants GA-PAGA , GA-H, and GA-HS, in contrast to GA-B which yields signifi-
cantly lower efficiency.

7.3.2 Comparison of GA‑PAGA with BACON and Greedy

In the following, we focus on the GA-PAGA variant, which yields the higher effi-
ciency in terms of acceptance rate and resource utilization among all GA variants. In
this respect, we perform a comparison against the greedy algorithm (Algorithm 5)
and the BACON heuristic.

We initially compare the three methods in terms of acceptance rate. The simula-
tion results on the fat-tree topology (Fig. 9) indicate that GA-PAGA achieves higher
acceptance rates than the other methods and converges faster to a steady state.
These gains stems from the fact that GA-PAGA utilizes the available resources more

Fig. 7 Request acceptance rates of diverse GA variants

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 30 of 41

Fig. 8 Server CPU utilization with diverse GA variants

Fig. 9 Request acceptance rates of GA-PAGA, greedy, and BACON

1 3

Journal of Network and Systems Management (2023) 31:81 Page 31 of 41 81

efficiently, generating valid mappings in conditions of saturated bandwidth and
capacity by exploiting the state space more effectively.

In the following, we measure the traffic at intra-rack and inter-rack level gener-
ated by the embeddings of GA-PAGA , greedy, and BACON. Note that GA-PAGA
and BACON aim at reducing the communication cost among the interacting VNFs
(i.e., adjacent VNFs in the SFC graph). To this end, these methods follow differ-
ent approaches, resulting in different VNF placement strategies. More precisely,
GA-PAGA strives to place the VNFs of every SFC on the same server in order to
eliminate the communication cost among the interacting VNFs. On the other hand,
BACON seeks to place interacting VNFs onto the same rack (where its nodes exhibit
higher BC), but not necessarily on the same server. High BC is achieved when there
is a group of at least three servers on the same rack that may host a subgroup of the
VNFs. The greedy algorithm exercises a VNF consolidation strategy, similar to GA-
PAGA .

Figure 10 illustrates the intra-rack traffic generated by the embedding of SFCs
using the three methods under comparison. GA-PAGA and the greedy algorithm
yield lower volumes of intra-rack traffic, since they achieve a high level of VNF
consolidation within the same server. This is not the case for BACON, which
generates a substantial amount of traffic within each rack. This stems from the
VNF placement strategy explained earlier, which leads to the partitioning of SFC
graphs among multiple servers.

According to Fig. 11, GA-PAGA further leads to significant bandwidth con-
servation at the inter-rack level compared to BACON and greedy. This gain of

Fig. 10 Intra-rack traffic generated by GA-PAGA, greedy, and BACON

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 32 of 41

GA-PAGA is more evident for up to 5500 requests. Eventually, the generated
inter-rack traffic volumes of all three methods tend to converge, since the utili-
zation of resources within racks enforces the partitioning of SFC graphs across
multiple racks. Nevertheless, GA-PAGA is more effective in terms of inter-rack
traffic reduction with the generation of embeddings that use a minimum number
of racks. As shown in Fig. 11, the inter-rack traffic generated by BACON is for
most of the time on par with the greedy, as the corresponding curves in the plot
converge after 2000 requests.

Figure 12 illustrates the CPU utilization of the servers across the NFVI. GA-
PAGA yields efficient CPU utilization on par with the greedy and BACON. The
latter exhibits a slight advantage in terms of CPU utilization, compared to the
other two methods. However, this minor gain cannot outweigh the larger amounts
of traffic generated by BACON at the intra- and inter-rack level.

In addition to the request acceptance rate, we employ the Cost-to-Revenue
Ratio (CRR) in order to quantify the efficiency of the SFC embeddings, inline
with [40]. To this end, we initially define the Revenue (ℝ) of a SFC request, as:

ℝ =
∑

n∈Nv

dn + a ∗
∑

i,j∈Nv

ei,j

Fig. 11 Inter-rack traffic generated by GA-PAGA, greedy, and BACON

1 3

Journal of Network and Systems Management (2023) 31:81 Page 33 of 41 81

In essence, revenue accumulates all the node and link capacity demands of the SFC
request. Furthermore, we define the Embedding Cost (ℂ) that essentially accumu-
lates all node and link embedding costs, as follows:

Note that a is set to 0.5 in order to strike a balance between the two terms in both
formulas.

Based on the definitions above, CRR is computed as: CRR = ℂ / ℝ . Note that
the lower the CRR the better. Practically, CRR is mainly affected by the second
term of ℂ , i.e., embeddings with longer hop-counts increase the embedding cost,
and, thereby, the CRR. Hence, high CRR values imply a high degree of SFC par-
titioning among racks.

Figure 13 illustrates the CDF of the CRR for all embedded requests with the
three methods. According to this plot, GA-PAGA generates embeddings with
lower CRR compared to BACON and the greedy. For instance, 80% of the embed-
ded SFCs computed by GA-PAGA are associated with a CRR of 1.11 or less. This
CRR value indicates a low fragmentation of SFCs among racks and is in accord-
ance with the lower volume of inter-rack traffic generated by GA-PAGA .

Lastly, we compare the three SFC embedding methods in terms of solver
runtime in our system. The corresponding measurements appear in Table 4. As
expected, the greedy algorithm yields the lower runtime, due to its low complex-
ity. GA-PAGA exhibits a runtime slightly higher than 1 sec, which is substantially

ℂ =
∑

n∈Nv

dn + a ∗
∑

i,j∈Nv

ei,j ∗ hu,z

Fig. 12 Server CPU utilization with GA-PAGA, greedy, and BACON

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 34 of 41

lower compared to the 3.2 sec required by BACON to compute a SFC embedding.
The factors that mostly affect the runtime of the GA-PAGA are the VNF-graph
size and (despite parallelism) the supergenerations parameter. Setting supergen-
erations to 2 reduces the runtime of GA-PAGA at the level of the greedy.

Overall, GA-PAGA compares very favorably against a state-of-the-art method
(BACON) and a greedy algorithm. Whereas all three methods exhibit similar
(high) levels of CPU utilization, GA-PAGA stands out in terms of bandwidth uti-
lization, as its embeddings generate the lower amount of inter-rack traffic. This
can allow for a higher level of oversubscription in datacenter network topologies,
reducing the expenditure (CapEx) for NFVI operators. Furthermore, if required,
GA-PAGA can be tuned to generate embeddings in the order of hundreds of msec
via parameter adjustment and parallelization.

Fig. 13 CDF of Cost-to-Revenue Ratio (CRR) with GA-PAGA, greedy, and BACON

Table 4 Average solver runtime Solver runtime

GA-PAGA 1.1 sec
BACON 3.2 sec
Greedy 600 ms

1 3

Journal of Network and Systems Management (2023) 31:81 Page 35 of 41 81

8 Related Work

We hereby discuss related work on SFC and virtual network embedding (Sect. 8.1)
and on the study on the functionality of GAs (Sect. 8.2). We note that most related
work relies on machine learning, reinforcement learning, or heuristics, whereas GAs
are rarely employed within this scope. We further refer to a range of techniques for
the adjustment of GA parameters.

8.1 GAs for Graph Embedding

Authors in [27] present a GA for virtual network embedding. The proposed algo-
rithm is designed, such that it can benefit from its parallel execution on multiple
servers. The representation of the chromosomes is complex with variable length,
which increases the computational requirements of the algorithm. Furthermore, the
evaluation of the algorithm is carried out only for random topologies of relatively
small scale. As such, the efficiency of the proposed algorithms in structured topolo-
gies (e.g., fat-trees or leaf-spine) is not assessed.

A hybrid GA for virtual machine placement is proposed in [28]. This algorithm
is tailored to energy optimization in datacenters. In this algorithm, energy consump-
tion is considered as one of the evaluation parameters of the generated solutions.
This approach extends the model of the simple GA by applying a process of repair-
ing invalid solutions and a process of local optimization, enhancing the efficiency of
the algorithm. This method is applied and evaluated in small-scale random network
topologies.

Another GA for the VNF placement problem is proposed in [29]. VNF chaining
is not taken into account; instead, this work addresses the need for VNF scaling. The
proposed GA method is shown to be more efficient than an Integer Linear Program
(ILP), generating acceptable solutions. The evaluation is limited to small-scale net-
work topologies.

Authors in [41] elaborate on a system that partitions the substrate network into
clusters, using the k-medoids method in order to reduce the complexity of the algo-
rithm. A GA and the method of Chemical Reaction Optimization are applied in each
cluster separately for virtual network embedding. Both methods perform well in
comparison to integer programming. Another related application of GAs is load bal-
ancing on virtualized infrastructures [42].

Various techniques for the segmentation of the state space are presented in [43],
aiming at a more efficient exploration of the state space. In each technique, an algo-
rithm searches each segment for its optimal solution and, subsequently, the gener-
ated solutions from all the segments are combined. The issue with this approach is
that a predefined segmentation strategy may not be effective in different network
topologies. Such techniques lack the property of adaptability in different instances
of the problem, while our approach effectively adapts to different types of network
topologies. Comparing clustering and segmentation methods with our technique
based on the structure of procedures, we note that the aforementioned methods apply

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 36 of 41

an exploration of the state space defined on a static fashion, whereas our method is
dynamic and adaptable to different topologies.

This problem of VNF-graph embedding is addressed in [30] using a GA. The
novelty of this approach lies in the addition of a repairer in the algorithm for the
correction of invalid solutions. The evaluation of the proposed method is conducted
on medium-scale topologies; however, the embedding efficiency is not compared to
other existing methods.

Authors in [44] use crossover and mutation operators to avoid population homo-
geneity by maintaining diversity in the population and delay convergence. A down-
side of this approach is that it is not efficient for different types of networks. The
dynamic parameter adjustment procedure that we have devised does not exhibit this
disadvantage.

Using heuristics for the generation of the initial population can direct the search
in areas of the state space that are more likely to include an efficient solution, such
as in [45]. This is a method that we also employ as described in Sect. 5.

8.2 GA Modeling and Parameter Adjustment

There are various efforts to understand the behavior of GAs. Most popular modeling
frameworks include Markov chain modeling [46] and the building blocks hypoth-
esis [47]. Both frameworks exhibit limitations, since there are applications of GAs
that they do not cover. In addition, they do not explain the ability of GAs to either
efficiently solve (or not) a range of computational problems. Instead, our model cap-
tures the behavior of GAs with respect to a class of computational problems that
SFC embedding belongs.

Parameter adjustment on GAs is still an open problem, due to the lack of a con-
crete theoretical framework for their operation [48]. Researchers have adopted
empirical methods in order to investigate the optimal parameter values for practical
applications of GAs. In most relevant studies, the researchers experiment on prob-
lems of static configuration, such as algebraic problems. However, in reality, we
often deal with problems the configuration of which is subject to variations during
runtime, such as the embedding problem that we study in this work. In our study of
parameter adjustment, we take this particular aspect into consideration.

Various studies focus on the optimization of one of the parameters (e.g., popu-
lation size), while others follow a holistic approach, studying the behavior of the
whole set of parameters. We mainly care about the latter, which can lead to more
interesting results of practical value. First, we examine studies that aim to draw con-
clusions about the nature of GAs and then self-adaptation methods integrated on the
GAs and executed at run-time.

In [48], the interactions among the parameters of a GA are studied extend-
ing previous works on the same direction. The authors study GAs which compute
the global optima of a set of algebraic functions. The behavior of each parameter
is studied by applying variations on its value and then comparing the results with
experiments of the same fashion on the other parameters. The experimental results
lack generalization, as they are applied on a specific type of problems and do not

1 3

Journal of Network and Systems Management (2023) 31:81 Page 37 of 41 81

lead to any practical solution or to some concrete substantiation on the matter, which
could be used in algorithm design.

The investigation of parameter adjustment using a meta-level GA is investigated
in [49]. The meta-level algorithm generates a population of possible setups and
computes the optimal one. The researchers perform extensive experiments on this
design and provide interesting results. In our previous work [24], we utilize a similar
method. The downside in both cases is that the methods are applied on static prob-
lem instances (i.e., not during runtime), so they lack adaptability on different prob-
lem configurations. In the design of PAGA, we overcome these limitations.

The execution in parallel of the same algorithm with different setups is a common
approach on self-adaptive GAs. The results from the parallel executions are then
compared in order to determine the optimal setup and modify the current parameters
of the algorithm. In [50], the optimal setup is determined using reinforcement learn-
ing; however, the efficiency of this method is not firmly assessed. In [51], the opti-
mal setup is computed based on the comparison of the outputs from each parallel
execution, leading to satisfactory results on problems of static nature.

The parallel execution of the genetic algorithm for the more efficient search of
the state space and the avoidance of premature convergence is also used in several
studies (e.g., [52]). The major difference between these approaches and the structure
of procedures that we employ is that in the aforementioned works the algorithms
merely choose the best mapping from the parallel computation outputs, while in our
solution the outputs are combined in order to compute a new mapping improving the
efficiency of the algorithm.

9 Conclusions

SFC embedding comprises a crucial orchestration aspect for NFV infrastructures.
In contrast to various heuristics and exact methods employed to tackle this problem,
we investigated the efficiency of AI-assisted embedding, leveraging on genetic algo-
rithms. Our proposed GA-based solution deviates from mainstream GA methods,
since it incorporates advanced features, such as the dynamic parameter adjustment
depending on the problem configuration and the generation of an initial population
using a greedy algorithm. The former achieves the fine-tuning of the GA based on
the particular problem instance, whereas the latter augments the GA with the con-
vergence to the desired solution.

Coupling these capabilities with the structure of procedures empowers our most
advanced GA variant, i.e., GA-PAGA , to confront the computational complexity
of VNF-graph embedding and generate efficient solutions. Our evaluation results
uncover significant gains for GA-PAGA in terms of request acceptance and resource
utilization, in comparison to other GA variants that employ a subset of GA-PAGA’s
features. GA-PAGA also outperforms a baseline greedy algorithm and a state-of-the-
art heuristic with a similar optimization objective. Additional micro-benchmarks
indicate that these efficiency gains stem from improved VNF consolidation, which,
in turn, yields lower bandwidth consumption.

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 38 of 41

In future work, we plan to explore the suitability of other methods for AI-assisted
resource orchestration across multiple domains, and identify potential gains and
trade-offs compared to existing heuristic and exact methods. This problem entails
challenging aspects, such as the need for privacy preservation and autonomous deci-
sion making within each domain. In this respect, federated learning comprises a
promising approach that we will harness.

Author Contributions All authors contributed in the preparation of all the sections of the manuscript.

Funding This research was funded by the European Union’s Horizon Europe research and innovation
program under grant agreement No. 101070487 (NEPHELE). The publication of the article in Open
Access mode was financially supported by HEAL-Link.

Data Availibility Not applicable.

Code Availability The code used for the implementation of the presented algorithms and procedures is
available in [26] as an open source project.

Declarations

Conflicts of interest The authors confirm that there are no competing interests between the authors and the
organizations of the authors.

Ethical Approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. ETSI Network Function Virtualization. http:// www. etsi. org/ techn ologi es- clust ers/ techn ologi es/ nfv
 2. Kourtis, M.-A., et al.: T-nova: an open-source mano stack for nfv infrastructures. IEEE Trans. Netw.

Serv. Manag. 14(3), 586–602 (2017)
 3. Papathanail, G., Pentelas, A., Fotoglou, I., Papadimitriou, P., Katsaros, K.V., Theodorou, V., Sour-

sos, S., Spatharakis, D., Dimolitsas, I., Avgeris, M., Dechouniotis, D., Papavassiliou, S.: Meson:
optimized cross-slice communication for edge computing. IEEE Commun. Mag. 58(10), 23–28
(2020)

 4. Sherry, J., et al.: Making middleboxes someone else’s problem: network processing as a cloud ser-
vice. ACM SIGCOMM Comput. Commun. Rev. 42(4), 13–24 (2012)

 5. Dietrich, D., et al.: Multi-provider service chain embedding with Nestor. IEEE Trans. Netw. Serv.
Manag. 14(1), 91–105 (2017)

 6. Abujoda, A., Papadimitriou, P.: Midas: middlebox discovery and selection for on-path flow process-
ing. In: IEEE COMSNETS (2015)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.etsi.org/technologies-clusters/technologies/nfv

1 3

Journal of Network and Systems Management (2023) 31:81 Page 39 of 41 81

 7. Dietrich, D., et al.: Network function placement on virtualized cellular cores. In: IEEE COM-
SNETS, pp. 259–266 (2017)

 8. Abujoda, A., Papadimitriou, P.: Distnse: Distributed network service embedding across multiple
providers. In: IEEE COMSNETS (2016)

 9. Papagianni, C., et al.: Rethinking service chain embedding for cellular network slicing. In: IFIP Net-
working, pp. 1–9 (2018)

 10. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable
flow problem. Algorithmica 47(1), 53–78 (2007)

 11. Dräxler, S., Karl, H., Mann, Z.Á.: Jasper: joint optimization of scaling, placement, and routing of
virtual network services. IEEE Trans. Netw. Serv. Manag. 15(3), 946–960 (2018)

 12. Gong, L., Jiang, H., Wang, Y., Zhu, Z.: Novel location-constrained virtual network embedding lc-
vne algorithms towards integrated node and link mapping. IEEE/ACM Trans. Netw. 24(6), 3648–
3661 (2016)

 13. Amaldi, E., Coniglio, S., Koster, A.M., Tieves, M.: On the computational complexity of the virtual
network embedding problem. Electron. Notes Discret. Math. 52, 213–220 (2016)

 14. Figiel, A., Kellerhals, L., Niedermeier, R., Rost, M., Schmid, S., Zschoche, P.: Optimal virtual net-
work embeddings for tree topologies. In: Proceedings of the 33rd ACM Symposium on Parallelism
in Algorithms and Architectures. SPAA ’21, pp. 221–231 (2021)

 15. Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., Trubian, M.: Heuristics from nature
for hard combinatorial optimization problems. Int. Trans. Oper. Res. 3(1), 1–21 (1996)

 16. Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: Near optimal placement of virtual network func-
tions. In: IEEE INFOCOM (2015)

 17. Basta, A., Kellerer, W., Hoffmann, M., Morper, H.J., Hoffmann, K.: Applying nfv and sdn to lte
mobile core gateways, the functions placement problem. In: Proceedings of the 4th Workshop on
All Things Cellular, pp. 33–38 (2014)

 18. Pentelas, A., Papathanail, G., Fotoglou, I., Papadimitriou, P.: Network service embedding across
multiple resource dimensions. IEEE Trans. Netw. Serv. Manag. 18(1), 209–223 (2021)

 19. Harutyunyan, D., Riggio, R.: Flex5g: flexible functional split in 5g networks. IEEE Trans. Netw.
Serv. Manag. 15(3), 961–975 (2018)

 20. Riggio, R., Bradai, A., Harutyunyan, D., Rasheed, T., Ahmed, T.: Scheduling wireless virtual net-
works functions. IEEE Trans. Netw. Serv. Manag. 13(2), 240–252 (2016)

 21. Renzi, C., Leali, F., Cavazzuti, M., Andrisano, A.O.: A review on artificial intelligence applications
to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf.
Technol. 72(1–4), 403–418 (2014)

 22. Guo, H., Hsu, W.H.: A machine learning approach to algorithm selection for NP-hard optimization
problems: a case study on the mpe problem. Annals Operations Res. 156(1), 61–82 (2007)

 23. Zhang, B., Fan, Q., Zhang, X., Fu, Z., Wang, S., Li, J., Xiong, Q.: A survey of vnf forwarding graph
embedding in b5g/6g networks. Wirel. Netw. (2021). https:// doi. org/ 10. 1007/ s11276- 021- 02741-9

 24. Rodis, P., Papadimitriou, P.: Intelligent network service embedding using genetic algorithms. In:
2021 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7 (2021). IEEE

 25. Hawilo, H., Jammal, M., Shami, A.: Network function virtualization-aware orchestrator for service
function chaining placement in the cloud. IEEE J. Sel. Areas Commun. 37(3), 643–655 (2019)

 26. Rodis, P.: SFC Embedding simulator and algorithms source code. https:// rodis pante lis. github. io/
SFC- Embed ding/

 27. Lu, Q., Nguyen, K., Huang, C.: Distributed parallel algorithms for online virtual network embed-
ding applications. Int. J. Commun. Syst. 36, 4325 (2020)

 28. Tang, M., Pan, S.: A hybrid genetic algorithm for the energy-efficient virtual machine placement
problem in data centers. Neural Process. Lett. 41(2), 211–221 (2015)

 29. Rankothge, W., Le, F., Russo, A., Lobo, J.: Optimizing resource allocation for virtualized network
functions in a cloud center using genetic algorithms. IEEE Trans. Netw. Serv. Manag. 14(2), 343–
356 (2017)

 30. Pham, T.A.Q., Sanner, J.-M., Morin, C., Hadjadj-Aoul, Y.: Virtual network function-forwarding
graph embedding: a genetic algorithm approach. Int. J. Commun. Syst. 33(10), 4098 (2020)

 31. Holland, J.H.: Adaptation in natural and artificial systems, university of Michigan press. Ann Arbor
MI 1(97), 5 (1975)

 32. Diveev, A., Bobr, O.: Variational genetic algorithm for np-hard scheduling problem solution. Proce-
dia Comput. Sci. 103, 52–58 (2017)

https://doi.org/10.1007/s11276-021-02741-9
https://rodispantelis.github.io/SFC-Embedding/
https://rodispantelis.github.io/SFC-Embedding/

 Journal of Network and Systems Management (2023) 31:81

1 3

 81 Page 40 of 41

 33. Green, D., Aleti, A., Garcia, J.: The nature of nature: why nature-inspired algorithms work. Nature-
inspired computing and optimization, pp. 1–27. Springer, Berlin (2017)

 34. Paul, P.V., Moganarangan, N., Kumar, S.S., Raju, R., Vengattaraman, T., Dhavachelvan, P.: Perfor-
mance analyses over population seeding techniques of the permutation-coded genetic algorithm: an
empirical study based on traveling salesman problems. Appl. Soft Comput. 32, 383–402 (2015)

 35. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Annals Hist. Com-
put. 7(1), 43–57 (1985)

 36. Moharam, R., Morsy, E.: Genetic algorithms to balanced tree structures in graphs. Swarm Evolut.
Comput. 32, 132–139 (2017)

 37. Contreras-Bolton, C., Gatica, G., Barra, C.R., Parada, V.: A multi-operator genetic algorithm for the
generalized minimum spanning tree problem. Expert Syst. Appl. 50, 1–8 (2016)

 38. Marchiori, E.: Genetic, iterated and multistart local search for the maximum clique problem. Work-
shops on applications of evolutionary computation, pp. 112–121. Springer, Berlin (2002)

 39. Lim, S.M., Sultan, A.B.M., Sulaiman, M.N., Mustapha, A., Leong, K.Y.: Crossover and mutation
operators of genetic algorithms. Int. J. Mach. Learn. Comput. 7(1), 9–12 (2017)

 40. Dietrich, D., Papadimitriou, P.: Policy-compliant virtual network embedding. In: 2014 IFIP Net-
working Conference, pp. 1–9 (2014). IEEE

 41. El Mensoum, I., Wahab, O.A., Kara, N., Edstrom, C.: Musc: a multi-stage service chains embedding
approach. J. Netw. Comput. Appl. 159, 102593 (2020)

 42. Lagwal, M., Bhardwaj, N.: Load balancing in cloud computing using genetic algorithm. In: 2017
International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 560–565
(2017). IEEE

 43. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a survey of method-
ologies for promoting diversity in evolutionary optimization. Information Sci. 329, 782–799 (2016)

 44. Hrstka, O., Kučerová, A.: Improvements of real coded genetic algorithms based on differential oper-
ators preventing premature convergence. Adva. Eng. Softw. 35(3–4), 237–246 (2004)

 45. Rocha, M., Neves, J.: Preventing premature convergence to local optima in genetic algorithms via
random offspring generation. International Conference on Industrial Engineering and Other Appli-
cations of Applied Intelligent Systems, pp. 127–136. Springer, Berlin (1999)

 46. Schmitt, L.M.: Theory of genetic algorithms. Theoretical Comput. Sci. 259(1–2), 1–61 (2001)
 47. Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. Search Methodol. (2005). https:// doi. org/

10. 1007/0- 387- 28356-0_4
 48. Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm parameters. Found.

Genet. Algorithms 5(5), 265–286 (1999)
 49. Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter space of evolutionary algo-

rithms. Bio Data Mining 11(1), 1–14 (2018)
 50. Pellerin, E., Pigeon, L., Delisle, S.: Self-adaptive parameters in genetic algorithms. Data mining and

knowledge discovery: theory, tools and technology, pp. 53–64. International Society for Optics and
Photonics, Bellingham (2004)

 51. Tongchim, S., Chongstitvatana, P.: Parallel genetic algorithm with parameter adaptation. Informa-
tion Process. Lett. 82(1), 47–54 (2002)

 52. Nguyen, K.T.D., Huang, C.: An intelligent parallel algorithm for online virtual network embed-
ding. In: 2019 International Conference on Computer, Information and Telecommunication Systems
(CITS), pp. 1–5 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Panteleimon Rodis is a Ph.D. candidate at the Department of Applied Informatics in the University of
Macedonia, Greece. He obtained a B.Sc. in Computer Science in 2011 and a M.Sc. in Engineering of
Pervasive Computing Systems in 2020 both from Hellenic Open University. His research interests include
the applications of Artificial Intelligence in virtual network embedding and VNF orchestration.

Panagiotis Papadimitriou is an Associate Professor at the department of Applied Informatics in the
University of Macedonia, Greece. Before that, he was an Assistant Professor at the Communications

https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1007/0-387-28356-0_4

1 3

Journal of Network and Systems Management (2023) 31:81 Page 41 of 41 81

Technology Institute of Leibniz Universität Hannover, Germany, and a member of L3S research center
in Hanover. He received a Ph.D. in Electrical and Computer Engineering from Democritus University of
Thrace, Greece, in 2008, a M.Sc Information Technology from University of Nottingham, UK, in 2001,
and a B.Sc. in Computer Science from University of Crete, Greece, in 2000. He has been a (co-)PI in
several EU-funded (e.g., NEPHELE, NECOS, T-NOVA, CONFINE) and nationally-funded projects (e.g.,
G-Lab VirtuRAMA, MESON). Panagiotis was a recipient of Best Paper Awards at IFIP WWIC 2012,
IFIP WWIC 2016, and the runner-up Poster Award at ACM SIGCOMM 2009. He has co-chaired several
international conferences and workshops, such as IFIP/IEEE CNSM 2022, IFIP Networking TENSOR
2020–2023, IEEE NetSoft S4SI 2020, IEEE CNSM SR+SFC 2018–19, IFIP WWIC 2016–2017, and
INFOCOM SWFAN 2016. Panagiotis is also an Associate Editor of IEEE Transactions on Network and
Service Management, and a Senior Member of IEEE. His research activities include (next-generation)
Internet architectures, network processing, programmable dataplanes, time-sensitive networking (TSN),
and edge computing.

	Intelligent and Resource-Conserving Service Function Chain (SFC) Embedding
	Abstract
	1 Introduction
	2 Problem Description
	2.1 SFC Embedding
	2.2 Network and Request Model
	2.2.1 Network Model
	2.2.2 Request Model

	2.3 Problem Formulation

	3 Background on Genetic Algorithms
	4 Genetic Algorithm Modeling
	5 Genetic Algorithm
	6 Dynamic Parameter Adjustment
	6.1 Parameter Adjustment as an Optimization Problem
	6.2 Genetic Algorithm for Parameter Adjustment

	7 Evaluation
	7.1 Environment
	7.2 Comparison Methods
	7.3 Evaluation Results
	7.3.1 Comparison Among GA Variants
	7.3.2 Comparison of GA-PAGA with BACON and Greedy

	8 Related Work
	8.1 GAs for Graph Embedding
	8.2 GA Modeling and Parameter Adjustment

	9 Conclusions
	References

